RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The Analysis and Fabrication of a Novel Tin-Nickel Mixed Salt Electrolytic Coloured Processing and the Performance of Coloured Films for Al-12.7Si-0.7Mg Alloy in Acidic and Alkali Corrosive Environments

        Yan Shang,Linshan Wang,Changsheng Liu,Carlos Fernandez,L.Rajendran,M. Kirthiga,Yuhong Wang,Dun Niu,Dongdong Liu 한국정밀공학회 2017 International Journal of Precision Engineering and Vol.18 No.1

        We present for the first time the analysis and fabrication of a novel Tin-Nickel mixed salt electrolytic coloured processing and the performance of coloured films for Al-12.7Si-0.7Mg alloy. This alloy is a novel alloy containing high silicon aluminum alloy extrusion profile which presents excellent mechanical properties as well as broad market prospects. Nevertheless, this kind of material is urgent in need of surface treatment technology. The orthogonal design and single factor tests were applied to optimize for electrolytic coloured technological conditions. By controlling operation conditions, the uniform electrolytic coloured films with different color were obtained. Analysis of microstructure showed that tin particles had been deposited in the coloured film. The coloured films, about 10 μm thick, were uniform, dense and firmly attached to the substrate. After the coloured samples were maintained at 400ºC for 1 h, or quenched from 300ºC to room temperature, the coloured films did not change, demonstrating excellent thermostability and thermal shock resistance. Acid and alkali corrosion tests and potentiodynamic polarization showed that corrosion resistance of coloured sample was much better than those of untreated samples. After 240 h neutral salt spray test, protection ratings and appearance ratings of coloured films were Grade 9.

      • KCI등재

        In silico, anti-inflammatory and acute toxicological evaluation of an indigenous medicinal plant Pterospermum rubiginosum using Sprague-Dawley rats

        Rajamohanan Jalaja Anish,Aswathy Nair,V. Saraswathy,Velappan Nair S. Kalpana,Rajendran L. Shyma 한국실험동물학회 2024 Laboratory Animal Research Vol.40 No.1

        Background: Pterospermum rubiginosum has been traditionally used by the tribal inhabitants of Southern India for treating bone fractures and as a local anti-inflammatory agent; however, experimental evidence to support this traditional usage is lacking. The present study aimed to investigate the phytochemical characterization, in silico and in vitro anti-inflammatory evaluation, followed by in vivo toxicological screening of P. rubiginosum methanolic bark extract (PRME). Results: The LCMS evaluation revealed the presence of 80 significant peaks; nearly 50 molecules were identified using the LCMS database. In silico analysis showed notable interactions with inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6). In vitro gene expression study supported the docking results with significant down-regulation of iNOS, IL-6, and IL-10. PRME was administered orally to the SD rats and was found to be non-toxic up to 1000 mg/kg body weight for 14 days. The antioxidant enzymes catalase and sodium dismutase exhibited an increased value in PRME-administered groups, possibly due to the diverse phytochemical combinations in bark extract. Conclusions: PRME administration significantly downregulated the gene expression of inflammatory markers, such as iNOS, IL-6, and IL-10. The molecular docking analysis of iNOS and IL-6 supports the in vitro study. In vivo toxicological study of PRME in SD rats was found to be non-toxic up to a concentration of 1000 mg/kg body weight for 14 days. Background: Pterospermum rubiginosum has been traditionally used by the tribal inhabitants of Southern India for treating bone fractures and as a local anti-inflammatory agent; however, experimental evidence to support this traditional usage is lacking. The present study aimed to investigate the phytochemical characterization, in silico and in vitro anti-inflammatory evaluation, followed by in vivo toxicological screening of P. rubiginosum methanolic bark extract (PRME). Results: The LCMS evaluation revealed the presence of 80 significant peaks; nearly 50 molecules were identified using the LCMS database. In silico analysis showed notable interactions with inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6). In vitro gene expression study supported the docking results with significant down-regulation of iNOS, IL-6, and IL-10. PRME was administered orally to the SD rats and was found to be non-toxic up to 1000 mg/kg body weight for 14 days. The antioxidant enzymes catalase and sodium dismutase exhibited an increased value in PRME-administered groups, possibly due to the diverse phytochemical combinations in bark extract. Conclusions: PRME administration significantly downregulated the gene expression of inflammatory markers, such as iNOS, IL-6, and IL-10. The molecular docking analysis of iNOS and IL-6 supports the in vitro study. In vivo toxicological study of PRME in SD rats was found to be non-toxic up to a concentration of 1000 mg/kg body weight for 14 days.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼