RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Synthesis and characterization of graphene oxide, reduced graphene oxide and their nanocomposites with polyethylene oxide

        Alghyamah Abdulaziz A.,Haider Sajjad,Khalil Uzma,Khan Rawaiz,Haider Adnan,Almasry Waheed A.,Ihsan Rida,Tahira Perveen,Wazeer Irfan,Chafidz Achmad 한국물리학회 2022 Current Applied Physics Vol.40 No.-

        This work describes the synthesis of GO, rGO and their nanocomposites with PEO. GO and rGO were prepared by the modified Hummers method and in-situ reduction of GO utilizing green reductant L (+) Ascorbic acid. The nanocomposites were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Thermogravimetric Analysis (TGA), and Universal Testing Machine (UTM). FT-IR and XRD confirmed the synthesis of GO and rGO. FE-SEM confirmed the uniformly exfoliated GO and rGO nanosheets in the polymer matrix. Hydrogen bonding was the main interaction mechanism for GO with PEO while no interaction was detected by FT-IR for rGO. Enhanced thermal stability was observed for both GO/PEO and rGO/PEO nanocomposites. The mechanical analysis showed an increase in Young’s modulus, tensile strength, and elongation at break for GO/PEO nanocomposites, which is attributed to the homogeneous dispersion and hydrophilic hydrogen bonding interaction of GO with PEO.

      • KCI등재

        Structural and Electromechanical Behavior Evaluation of Polymer-Copper Nanocomposites

        Gulfam Nasar,Muhammad Azhar Khan,Muhammad Farooq Warsi,Muhammad Shahid,Uzma Khalil,Muhammad Saleem Khan 한국고분자학회 2016 Macromolecular Research Vol.24 No.4

        Copper nanoparticles were prepared by chemical reduction of copper nitrate by sodium borohydride as a reducing agent in de-ionized water/acetonitrile mixture. The prepared nanoparticles were incorporated in poly(vinyl alcohol) (PVA) by physical dispersion method to obtain PVA/copper nanocomposites. Various compositions of nanocomposites were obtained by changing the w/w ratio of nanoparticles with the polymeric material. The prepared nanocomposites cast into films of uniform thickness. The composite films were subjected to the electrical, mechanical and surface morphology characterization. AC Impedance was figured out by AC Impedance analyser. The results illustrated that copper nanoparticles impart electrical conductivity in poly(vinyl alcohol). Moreover, electrical conductivity of the composites exhibited an increase with an increase of w/w% of the copper nanoparticles in poly(vinyl alcohol). Tensile properties were studied in terms of tensile strength, elongation at break and Young’s modulus. Elongation at break and Young’s modulus values demonstrated an increase while tensile strength displayed a decrease at higher concentration of the copper nanoparticles in the composites. AFM results unfolded the surface morphology of the composites illustrating a smooth surface with evenly distributed copper nanoparticles in the polymer matrix. The dimensions of the uneven surface is attributed to the copper nanoparticles were estimated to be of a range less than 100 nm. The prepared nanocomposites are suggested as potential candidates in charge storing devices.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼