RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Carbon dynamics in agricultural greenhouse gas emissions and removals: a comprehensive review

        Kamyab Hesam,SaberiKamarposhti Morteza,Hashim Haslenda,Yusuf Mohammad 한국탄소학회 2024 Carbon Letters Vol.34 No.1

        Agriculture is a pivotal player in the climate change narrative, contributing to greenhouse gas (GHG) emissions while offering potential mitigation solutions. This study delved into agriculture’s climate impact. It comprehensively analysed emissions from diverse agricultural sources, carbon sequestration possibilities, and the repercussions of agricultural emissions on climate and ecosystems. The study began by contextualising the historical and societal importance of agricultural GHG emissions within the broader climate change discourse. It then discussed into GHG emitted from agricultural activities, examining carbon dioxide, methane, and nitrous oxide emissions individually, including their sources and mitigation strategies. This research extended beyond emissions, scrutinising their effects on climate change and potential feedback loops in agricultural systems. It underscored the importance of considering both the positive and negative implications of emissions reduction policies in agriculture. In addition, the review explored various avenues for mitigating agricultural emissions and categorised them as sustainable agricultural practices, improved livestock management, and precision agriculture. Within each category, different subsections explain innovative methods and technologies that promise emissions reduction while enhancing agricultural sustainability. Furthermore, the study addressed carbon sequestration and removal in agriculture, focussing on soil carbon sequestration, afforestation, and reforestation. It highlighted agriculture’s potential not only to reduce emissions, but also to serve as a carbon reservoir, lowering overall GHG impact. The research also scrutinised the multifaceted nature of agriculture, examining the obstacles hindering mitigation strategies, including socioeconomic constraints and regulatory hurdles. This study emphasises the need for equitable and accessible solutions, especially for smallholder farmers. It envisioned the future of agricultural emissions reduction, emphasising the advancements in measurement, climate-smart agricultural technologies, and cross-sectoral collaboration. It highlighted agriculture’s role in achieving sustainability and resilience amid a warming world, advocating collective efforts and innovative approaches. In summary, this comprehensive analysis recognised agriculture’s capacity to mitigate emissions while safeguarding food security, biodiversity, and sustainable development. It presents a compelling vision of agriculture as a driver of a sustainable and resilient future.

      • KCI등재

        Bioprospecting of biosurfactant-producing bacteria for hydrocarbon bioremediation: Optimization and characterization

        Bellebcir Anfal,Merouane Fateh,Chekroud Karim,Bounabi Hadjira,Vasseghian Yasser,Kamyab Hesam,Chelliapan Shreeshivadasan,Klemeš Jiří Jaromír,Berkani Mohammed 한국화학공학회 2023 Korean Journal of Chemical Engineering Vol.40 No.10

        Biosurfactants have been found capable of replacing synthetic surfactants which include ongoing bioprospecting of biosurfactant-producing bacteria as well as process optimization for maximum biosurfactant production. In this study, five morphologically distinct actinomycete strains isolated from hydrocarbon-polluted soil collected from an oil spill surface in Southeastern Algeria were tested for their ability to produce biosurfactants using preliminary biosurfactant screening assays. The 7SDS strain was selected as the most promising biosurfactant producer due to its greatest oil displacement diameter (7.83±0.15 cm), emulsification index (59.66±0.44%), and enhanced surface tension reduction (30.04±0.51 mN/m); it was identified as Streptomyces thinghirensis 7SDS using 16S rDNA sequence analysis. The 7SDS strain’s biosurfactant production was optimized using the Face-centered central composite design (CCD) based on response surface methodology (RSM). To this end, five independent factors, i.e., residual frying oil, used engine oil, whey, CS filtrate, and incubation time, were assessed. The RSM’s model predicted a surface tension of 27.48 mN/m using 2.44% (v/v) residual frying oil, 0.35% (v/v) used motor oil, 0.83% (v/v) whey, 0.39% (v/v) CS filtrate, and an incubation time of 219.3 h. The optimized medium produced 8.79 g/L of biosurfactant. The produced biosurfactant allows one to reduce the surface tension of distilled water from 70.86 mN/m to 27.96 mN/m at a critical micelle concentration of 350 mg/L, even over a wide range of pH (2.0–12.0), temperature (4–120 °C), and salinity (2–12%, W/V). Biochemical (Biuret, phenol-sulfuric acid, and phosphate tests) and compositional (FTIR and GC-MS) characterizations confirmed the phospholipid nature of the produced biosurfactant. Interestingly, the produced BS demonstrated significant antimicrobial activity as well as intriguing activity in removing hydrocarbons from polluted soil. Because of their appealing biological properties, strain 7SDS and its biosurfactant are attractive targets for a variety of applications such as biomedicine and environmental ones.

      • SCISCIESCOPUS

        Microplastics pollution in different aquatic environments and biota: A review of recent studies

        Rezania, Shahabaldin,Park, Junboum,Md Din, Mohd Fadhil,Mat Taib, Shazwin,Talaiekhozani, Amirreza,Kumar Yadav, Krishna,Kamyab, Hesam Elsevier 2018 MARINE POLLUTION BULLETIN Vol.133 No.-

        <P><B>Abstract</B></P> <P>Microplastics (MPs) are generated from plastic and have negative impact to our environment due to high level of fragmentation. They can be originated from various sources in different forms such as fragment, fiber, foam and so on. For detection of MPs, many techniques have been developed with different functions such as microscopic observation, density separation, Raman and FTIR analysis. Besides, due to ingestion of MPs by wide range of marine species, research on the effect of this pollution on biota as well as human is vital. Therefore, we comprehensively reviewed the occurrence and distribution of MPs pollution in both marine and freshwater environments, including rivers, lakes and wastewater treatment plants (WWTPs). For future studies, we propose the development of new techniques for sampling MPs in aquatic environments and biota and recommend more research regarding MPs release by WWTPs.</P> <P><B>Highlights</B></P> <P> <UL> <LI> MPs pollution in different aqueous environments and biota is reviewed. </LI> <LI> MPs pollution in marine and fresh waters were studied more than WWTPs. </LI> <LI> Wide range of marine biota ingested different types of MPs. </LI> <LI> Future studies should focused on treatment as detection is well developed. </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼