RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Observation of fluid layering and reverse motion in double-walled carbon nanotubes

        K. Yaghmaei,H. Rafii-Tabar 한국물리학회 2009 Current Applied Physics Vol.9 No.6

        Most modelling-based research in the field of carbon nanotube-related nano-fluidics has been concerned with the fluid flow in single-walled carbon nanotubes (SWCNTs), showing that the dynamics of the channel affect the structure and behaviour of the fluid. We have extended this work by modelling the flow of Ar in a double-walled carbon nanotube, and have modelled the flow in both the inner shell and the outer annular region of such a nanotube. We have found that the flows in these channels are strongly correlated, such that the fluid moves in opposite directions in these two regions. This phenomenon can give rise to a circulatory motion which can be exploited in nano-fluidic devices. Fluid layering phenomenon, that is usually associated with the flow of fluids in nano-scale channels, is also observed. Furthermore, we have also found that the fluid velocity in dynamic channels is smaller than in static channels, in line with the findings reported for single-walled carbon nanotubes. Most modelling-based research in the field of carbon nanotube-related nano-fluidics has been concerned with the fluid flow in single-walled carbon nanotubes (SWCNTs), showing that the dynamics of the channel affect the structure and behaviour of the fluid. We have extended this work by modelling the flow of Ar in a double-walled carbon nanotube, and have modelled the flow in both the inner shell and the outer annular region of such a nanotube. We have found that the flows in these channels are strongly correlated, such that the fluid moves in opposite directions in these two regions. This phenomenon can give rise to a circulatory motion which can be exploited in nano-fluidic devices. Fluid layering phenomenon, that is usually associated with the flow of fluids in nano-scale channels, is also observed. Furthermore, we have also found that the fluid velocity in dynamic channels is smaller than in static channels, in line with the findings reported for single-walled carbon nanotubes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼