RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Web Stress Development Mechanism Critical for the Fatigue Limit State in Horizontally Curved Steel Bridges

        Mehran Jalali Moghadam,Justin D. Marshall,James S. Davidson 한국강구조학회 2023 International Journal of Steel Structures Vol.23 No.2

        Although the nominal strength of modern steel bridges that involve increasingly slender elements has been well defined through extensive research and testing, fatigue concerns have not been thoroughly investigated. The out-of-plane displacements of slender webs result in secondary bending stresses at the web boundaries connections, i.e., flange and stiffeners. The so-called “web breathing” phenomenon potentially leads to fatigue crack initiation at the web boundary connections and has been studied for straight girders. Curved steel girders experience large deflection and rotations during construction and service that can intensify the web breathing effect. In addition, the curvature-induced lateral forces pushing and pulling slender curved webs develop mechanisms that can lead to critical web boundary stresses that do not typically occur in straight bridges. This paper aims to define the slender web behavior of composite curved steel bridges essential for the fatigue limit state. It focuses on capturing the distortion-induced web stresses from the construction stage through service using 3D finite element analyses. An advanced technique was applied to simulate the non-composite and composite stages to quantify the continuous web stress development due to geometric nonlinearities. Three different web panels under high shear, high moment, and high shear-moment combination were studied. The stress ranges due to the AASHTO fatigue truck is presented for composite bridges with varying curvature radii. The mechanism involved in curved bridges is defined and the stress magnitudes are compared to that of equivalent straight bridges to understand the role of curvature in intensifying the critical fatigue stress ranges.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼