RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental and Numerical Modeling of the Freeze-thaw Response of U-Shaped Channel Lining on Sulfate Saline Soil Foundation

        Sheng Li,Hongbo Li,Juncang Tian,Hao Sun,Yongfa Ding,Xuanshuo Zhang 대한토목학회 2024 KSCE Journal of Civil Engineering Vol.28 No.4

        Under the influence of seasonal freeze-thaw cycles, the concrete lining of channels situated on saline soil foundations is highly vulnerable to an array of deleterious phenomena, such as frost heave, salt expansion, and corrosion. To investigate the synergistic interplay among saline soil substrates, U-shaped channel lining structures, and ambient temperatures during freeze-thaw cycles, a novel Hydraulic-Thermal-Salt-Mechanical (HTSM) model is established in this study. The HTSM model elucidates the migration of moisture and salt solute, ice-water phase transitions, and sodium sulfate crystallization within unsaturated saline soils throughout the freeze-thaw cycles. It considers the variations in volume and pore solution volume before and after the phase transition of sodium sulfate. Temperature and salt frost heaving force measurements obtained from outdoor freeze-thaw cycles are compared with numerical simulation results to validate the efficacy of the HTSM model and investigate the distribution patterns of salt frost heaving force (frost swelling force) along the channel. The results showed that the frost swelling force and depth exhibit a great linear relationship and the maximum stress of the U-shaped channel appears at the bottom of the channel, highlighting the good arching force characteristics of the U-shaped structure which prove that bottom of the channel is also the most prone to fracture. Significantly, the initial water content significantly impacts the frost swelling force—it increases by 4% while the frost swelling force increases by 76%. Comparing the numerical simulation results of temperature variations, moisture changes, and salt-frost heaving forces with the outdoor experimental data, it is evident that the proposed HTSM model effectively simulates the salt-frost heaving patterns observed in U-shaped channel linings.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼