RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Regulation by Reversible S-Glutathionylation: Molecular Targets Implicated in Inflammatory Diseases

        Melissa Shelton,John Mieyal 한국분자세포생물학회 2008 Molecules and cells Vol.25 No.3

        S-glutathionylation is a reversible post-translational modification that continues to gain eminence as a redox regulatory mechanism of protein activity and associated cellular functions. Many diverse cellular proteins such as transcription factors, adhesion molecules, enzymes, and cytokines are reported to undergo glutathionylation, although the functional impact has been less well characterized. De-glutathionylation is catalyzed specifically and efficiently by glutaredoxin (GRx, aka thioltransferase), and facile reversibility is critical in determining the physiological relevance of glutathionylation as a means of protein regulation. Thus, studies with cohesive themes addressing both the glutathionylation of proteins and the corresponding impact of GRx are especially useful in advancing understanding. Reactive oxygen species (ROS) and redox regulation are well accepted as playing a role in inflammatory processes, such as leukostasis and the destruction of foreign particles by macrophages. We discuss in this review the current implications of GRx and/or glutathionylation in the inflammatory response and in diseases associated with chronic inflammation, namely diabetes, atherosclerosis, inflammatory lung disease, cancer, and Alzheimer’s disease, and in viral infections.

      • SCISCIESCOPUS

        Deglutathionylation of 2-Cys peroxiredoxin is specifically catalyzed by sulfiredoxin.

        Park, Ji Won,Mieyal, John J,Rhee, Sue Goo,Chock, P Boon American Society for Biochemistry and Molecular Bi 2009 The Journal of biological chemistry Vol.284 No.35

        <P>Reversible protein glutathionylation plays a key role in cellular regulation and cell signaling and protects protein thiols from hyperoxidation. Sulfiredoxin (Srx), an enzyme that catalyzes the reduction of Cys-sulfinic acid derivatives of 2-Cys peroxiredoxins (2-Cys Prxs), has been shown to catalyze the deglutathionylation of actin. We show that deglutathionylation of 2-Cys Prx, a family of peroxidases, is specifically catalyzed by Srx. Using the ubiquitously expressed member of 2-Cys Prx, Prx I, we revealed the following. (i) Among its four Cys residues, Cys(52), Cys(83), and Cys(173) can be glutathionylated in vitro. Deglutathionylation with Cys mutants showed that Cys(83) and Cys(173) were preferentially catalyzed by Srx, with glutathionylated Srx as the reaction intermediate, whereas glutaredoxin I was more favorable for deglutathionylating Cys(52). (ii) Studies using site-directed mutagenesis coupled with binding and deglutathionylation activities revealed that Pro(174) and Pro(179) of Prx I and Tyr(92) of Srx are essential for both activities. Furthermore, relative to glutaredoxin I, Srx exhibited negligible deglutathionylation activity for glutathionylated cysteine and glutathionylated BSA. These results indicate that Srx is specific for deglutathionylating Prx I due to its favorable affinity for Prx I. To assess the biological relevance of these observations, we showed that Prx I is glutathionylated in A549 and HeLa cells under modest levels of H(2)O(2). In addition, the level of glutathionylated Prx I was substantially elevated in small interfering RNA-mediated Srx-knocked down cells, whereas the reverse was observed in Srx-overexpressing cells. However, glutathionylation of Prx V, not known to bind to Srx, was not affected by the change in Srx expression levels.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼