RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        CFD Numerical Simulation of Wind Field and Vehicle Aerodynamic Characteristics on Truss Bridge Deck under Crosswind

        Mingjin Zhang,Jinxiang Zhang,Junting Long,Yongle Li,Yulin Zou,Dianguo Yin 대한토목학회 2022 KSCE Journal of Civil Engineering Vol.26 No.12

        Due to the complexity and changeability of the wind field in deep-cut gorges, the vehicles on the bridge deck are easily affected by a strong crosswind. Thus, to accurately evaluate the wind field characteristics of a suspension bridge deck, the wind profiles of wind speed and angle of attack (AoA) and the vehicle aerodynamic parameters were investigated by the CFD. The results show that the shape of wind speed profile is mainly controlled by the AoA but less affected by the Reynolds number. The main girder's shielding effect can accelerate the local wind field, and the closer to the windward lane, the less the interference; thus, a suitable location of measuring points to represent the incoming flow is found. Furthermore, the equivalent wind speed based on the equivalent side force is generally larger than the value based on the rolling moment, and the responding value is greatly affected by the AoA. In addition, the vortex is a time-dependent phenomenon, the averaged flow field produced less force in the wake, but the high local wind speed variations may affect the traffic unfavorably. The results provide an essential reference significance for studying the local wind field characteristics of the bridge deck.

      • Fe, N, S-codoped carbon frameworks derived from nanocrystal superlattices towards enhanced oxygen reduction activity

        Angang Dong,Wenqian Han,Yuchi Yang,Baixu Zhu,Biwei Wang,Jinxiang Zou 나노기술연구협의회 2019 Nano Convergence Vol.6 No.4

        Recently, iron, nitrogen and sulfur codoped carbon-based materials have gained increasing attention for their synergistic effect towards superior electrocatalytic oxygen reduction performance. To gain insight into the contributions of the heteroatoms, we developed a facile and reproducible method for constructing Fe, N, S-codoped carbon frameworks derived from self-assembled Fe3O4 nanocrystal superlattices. The material constructed by the suggested method exhibited excellent ORR activity with more positive half-wave potential (∼ 0.869 V, vs RHE), higher diffusion-limiting current density (∼ 5.88 mA/cm2) and smaller Tafel slope (45 mV/dec) compared with Fe, N-codoped carbon frameworks and Pt/C. Notably, Fe3O4 nanocrystals served as both the building blocks for constructing carbon frameworks and the source of Fe residues leaving in the frameworks at the same time. By artificially tailoring the doping type and level as well as the homogeneousness of heteroatoms, the results discussed herein prove the importance of each kind of heteroatom in boosting ORR activity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼