RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Theoretical Studies on the Alkylidene Silylenoid H<sub>2</sub>C = SiLiF and Its Insertion Reaction with R-H (R = F, OH, NH<sub>2</sub>)

        Tan, Xiaojun,Wang, Weihua,Li, Ping,Li, Qingyan,Cheng, Lei,Wang, Shufen,Cai, Weiwang,Xing, Jinping Korean Chemical Society 2010 Bulletin of the Korean Chemical Society Vol.31 No.5

        The geometries and isomerization of the alkylidene silylenoid $H_2C$ = SiLiF as well as its insertion reactions with R-H (R = F, OH, $NH_2$) have been systematically investigated at the B3LYP/6-311+$G^*$ level of theory. The potential barriers of the three insertion reactions are 97.5, 103.3, and 126.1 kJ/mol, respectively. Here, all the mechanisms of the three reactions are identical to each other, i.e., an intermediate has been formed first during the insertion reaction. Then, the intermediate could dissociate into the substituted silylene ($H_2C$ = SiHR) and LiF with a barrier corresponding to their respective dissociation energies. Correspondingly, the reaction energies for the three reactions are -36.4, -24.3, and 3.7 kJ/mol, respectively. Compared with the insertion reaction of $H_2C$ = Si: and R-H (R = F, OH and $NH_2$), the introduction of LiF makes the insertion reaction occur more easily. Furthermore, the effects of halogen (F, Cl, Br) substitution and inorganic salts employed on the reaction activity have also been discussed. As a result, the relative reactivity among the three insertion reactions should be as follows: H-F > H-OH > H-$NH_2$.

      • KCI등재

        Theoretical Studies on the Alkylidene Silylenoid H2C = SiLiF and Its Insertion Reaction with R-H (R = F, OH, NH2)

        Xiaojun Tan,Weihua Wang,Ping Li,Qingyan Li,Lei Cheng,Shufen Wang,Weiwang Cai,Jinping Xing 대한화학회 2010 Bulletin of the Korean Chemical Society Vol.31 No.5

        The geometries and isomerization of the alkylidene silylenoid H2C = SiLiF as well as its insertion reactions with R-H (R = F, OH, NH2) have been systematically investigated at the B3LYP/6-311+G* level of theory. The potential barriers of the three insertion reactions are 97.5, 103.3, and 126.1 kJ/mol, respectively. Here, all the mechanisms of the three reactions are identical to each other, i.e., an intermediate has been formed first during the insertion reaction. Then, the intermediate could dissociate into the substituted silylene (H2C = SiHR) and LiF with a barrier corresponding to their respective dissociation energies. Correspondingly, the reaction energies for the three reactions are ‒36.4, ‒24.3, and 3.7kJ/mol, respectively. Compared with the insertion reaction of H2C = Si: and R-H (R = F, OH and NH2), the introduction of LiF makes the insertion reaction occur more easily. Furthermore, the effects of halogen (F, Cl, Br) substitution and inorganic salts employed on the reaction activity have also been discussed. As a result, the relative reactivity among the three insertion reactions should be as follows: H-F > H-OH > H-NH2.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼