RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Efficient In Vitro Labeling Rabbit Bone Marrow-Derived Mesenchymal Stem Cells with SPIO and Differentiating into Neural-Like Cells

        Zhang, Ruiping,Li, Jing,Li, Jianding,Xie, Jun Korean Society for Molecular and Cellular Biology 2014 Molecules and cells Vol.37 No.9

        Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and $[Ca^{2+}]_i$ between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.

      • KCI등재

        Ameliorating Effects of Electroacupuncture on Dysmotility, Inflammation, and Pain Mediated via the Autonomic Mechanism in a Rat Model of Postoperative Ileus

        Haruaki Murakami,Shiying Li,Robert Foreman,Jieyun Yin,Jiande D Z Chen 대한소화기 기능성질환∙운동학회 2019 Journal of Neurogastroenterology and Motility (JNM Vol.25 No.2

        Background/Aims Postoperative ileus increases healthcare costs and reduces the postoperative quality of life (QOL). The aim of this study is to investigate effects and mechanisms of electroacupuncture (EA) at ST36 and PC6 on gastrointestinal motility in rat model of postoperative ileus. Methods Laparotomy was performed in 24 rats (control [n = 8], sham-EA [n = 8], and EA [n = 8]) for the implantation of electrodes in the stomach and mid-jejunum for recording of gastric and small intestinal slow waves. Electrodes were placed in the chest skin for electrocardiogram (ECG). Intestinal manipulation (IM) was performed in Sham-EA and EA rats after surgical procedures. Small intestinal transit (SIT), gastric emptying (GE), postoperative pain, and plasma TNF-α were evaluated in all rats. Results (1) Compared with sham-EA, EA accelerated both SIT (P < 0.05) and GE (P < 0.05) and improved regularity of small intestinal slow waves. (2) Compared with the control rats (no IM), IM suppressed vagal activity and increased sympathovagal ratio assessed by the spectral analysis of heart rate variability from ECG, which were significantly prevented by EA. (3) EA significantly reduced pain score at 120 minutes (P < 0.05, vs 15 minutes) after the surgery, which was not seen with sham-EA. (4) Plasma TNF-α was increased by IM (P = 0.02) but suppressed by EA (P = 0.04) but not sham-EA. Conclusion The postoperative ileus induced by IM, EA at ST36 and PC6 exerts a prokinetic effect on SIT and GE, a regulatory effect on small intestinal slow waves and an analgesic effect on postoperative pain possibly mediated via the autonomic-cytokine mechanisms.

      • KCI등재

        Efficient In Vitro Labeling Rabbit Bone Marrow-Derived Mesenchymal Stem Cells with SPIO and Differentiating into Neural-Like Cells

        Ruiping Zhang,Jing Li,Jianding Li,Jun Xie 한국분자세포생물학회 2014 Molecules and cells Vol.37 No.9

        Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and [Ca2+]i between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.

      • Comprehensive Evaluation Method for Key Components of Charging Equipment Based on Improved Grey Relational Decision

        Xuan Zhang,Chen Dong,Jiande Ye,Xvling Li,Xi Chen,Xiulan Liu 전력전자학회 2023 ICPE(ISPE)논문집 Vol.2023 No.-

        A comprehensive evaluation technique of the key components of the charging equipment based on improved grey relational choice is provided in order to realize the comprehensive evaluation of the key components of the charging equipment and improve the safety and stability of the charging equipment. In the first step, the fundamental makeup of the charging equipment is examined, and its essential components are identified; in the second step, a thorough evaluation index system is built for the charging equipments essential components; Lastly, a hybrid method based on TOPSIS grey correlation decision and entropy weight is presented to thoroughly assess the essential parts of the charging apparatus. The simulation outcomes demonstrate that the suggested approach can provide sorting and feature evaluation ranking results that are compatible with the actual situation, which verifies the feasibility and effectiveness of the proposed method.

      • KCI등재

        Robust Image Watermarking via Perceptual Structural Regularity-based JND Model

        ( Chunxing Wang ),( Meiling Xu ),( Wenbo Wan ),( Jian Wang ),( Lili Meng ),( Jing Li ),( Jiande Sun ) 한국인터넷정보학회 2019 KSII Transactions on Internet and Information Syst Vol.13 No.2

        A better tradeoff between robustness and invisibility will be realized by using the just noticeable (JND) model into the quantization-based watermarking scheme. The JND model is usually used to describe the perception characteristics of human visual systems (HVS). According to the research of cognitive science, HVS can adaptively extract the structure features of an image. However, the existing JND models in the watermarking scheme do not consider the structure features. Therefore, a novel JND model is proposed , which includes three aspects: contrast sensitivity function, luminance adaptation, and contrast masking (CM). In this model, the CM effect is modeled by analyzing the direction features and texture complexity, which meets the human visual perception characteristics and matches well with the spread transform dither modulation (STDM) watermarking framework by employing a new method to measure edge intensity. Compared with the other existing JND models, the proposed JND model based on structural regularity is more efficient and applicable in the STDM watermarking scheme. In terms of the experimental results, the proposed scheme performs better than the other watermarking scheme based on the existing JND models.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼