RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Analysis of Key Technologies for Industrialized Treatment of Fatty Acid High-Salinity Organic Wastewater

        Qinfang Lu,Byung-gon Jeong,Ping Yan,Sohee Kim,Shirong Lai,Jiancheng Liu 대한환경공학회 2020 대한환경공학회지 Vol.42 No.11

        Objectives : Wastewater produced by fatty acid production contains high concentration of organic substances and high concentration of salts (mainly sodium sulfate), causing great pollution to water resources and environment. The pollution prevention and control of this type of wastewater are very necessary. The key to treating this type of wastewater is to remove salts and COD to achieve harmless treatment. This is a problem in wastewater management that has plagued the industry for a long time. This paper proposed a technique suitable for fatty acid high salinity organic wastewater. Methods : First, the industrial treatment technology of organic wastewater with high salinity was introduced and analyzed. Combined with the principle of industrial wastewater treatment, the process route for the treatment of fatty acid high salinity organic wastewater was analyzed and selected. In addition, the key technology and process for anaerobic desalination and COD removal were analyzed and selected. Results and Discussion : According to the unique nature of this type of wastewater mainly containing sulphate salts and the feasibility of industrial production, a special technology combination was proposed to treat this wastewater at this stage. Since this wastewater has a B/C ratio of 0.4 to 0.45, it is easier to use biological treatment method. Thus, the conventional treatment method is pretreatment + biological treatment. Biological enhancement and reactor process optimization can be studied for better efficiency. Conclusions : Considering the high COD and sulphate concentration characteristics of fatty acid high-salinity organic wastewater, high-efficiency anaerobic biochemical treatment is mainly considered. Combined with modern high-efficiency anaerobic suspended sludge granule technology, it was concluded that pretreatment + high efficiency IC anaerobic + secondary biological treatment can achieve industrialized treatment of such wastewater in a targeted, low-cost and reliable way. In the later stage, bio-enhancement of the anaerobic process as well as structural and process optimization of the reactor can be carried out to obtain better technical and economic results in production practice.

      • KCI등재

        The triply periodic minimal surface-based 3D printed engineering scaffold for meniscus function reconstruction

        Lan Li,Peng Wang,Jing Jin,Chunmei Xie,Bin Xue,Jiancheng Lai,Liya Zhu,Qing Jiang 한국생체재료학회 2022 생체재료학회지 Vol.26 No.4

        Background: The meniscus injury is a common disease in the area of sports medicine. The main treatment for this disease is the pain relief, rather than the meniscal function recovery. It may lead to a poor prognosis and accelerate the progression of osteoarthritis. In this study, we designed a meniscal scaffold to achieve the purposes of meniscal function recovery and cartilage protection. Methods: The meniscal scaffold was designed using the triply periodic minimal surface (TPMS) method. The scaffold was simulated as a three-dimensional (3D) intact knee model using a finite element analysis software to obtain the results of different mechanical tests. The mechanical properties were gained through the universal machine. Finally, an in vivo model was established to evaluate the effects of the TPMS-based meniscal scaffold on the cartilage protection. The radiography and histological examinations were performed to assess the cartilage and bony structures. Different regions of the regenerated meniscus were tested using the universal machine to assess the biomechanical functions. Results: The TPMS-based meniscal scaffold with a larger volume fraction and a longer functional periodicity demonstrated a better mechanical performance, and the load transmission and stress distribution were closer to the native biomechanical environment. The radiographic images and histological results of the TPMS group exhibited a better performance in terms of cartilage protection than the grid group. The regenerated meniscus in the TPMS group also had similar mechanical properties to the native meniscus. Conclusion: The TPMS method can affect the mechanical properties by adjusting the volume fraction and functional periodicity. The TPMS-based meniscal scaffold showed appropriate features for meniscal regeneration and cartilage protection.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼