RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fatigue characteristics of distributed sensing cables under low cycle elongation

        Dan Zhang,Jiacheng Wang,Bo li,Bin Shi 국제구조공학회 2016 Smart Structures and Systems, An International Jou Vol.18 No.6

        When strain sensing cables are under long-term stress and cyclic loading, creep may occur in the jacket material and each layer of the cable structure may slide relative to other layers, causing fatigue in the cables. This study proposes a device for testing the fatigue characteristics of three types of cables operating under different conditions to establish a decay model for observing the patterns of strain decay. The fatigue characteristics of cables encased in polyurethane (PU), GFRP-reinforced, and wire rope-reinforced jackets were compared. The findings are outlined as follows. The cable strain decayed exponentially, and the decay process involved quick decay, slow decay, and stabilization stages. Moreover, the strain decay increased with the initial strain and tensile frequency. The shorter the unstrained period was, the more similar the initial strain levels of the strain decay curves were to the stabilized strain levels of the first cyclic elongation. As the unstrained period increased, the initial strain levels of the strain decay curves approached those of the first cyclic elongation. The tested sensing cables differed in the amount and rate of strain decay. The wire rope-reinforced cable exhibited the smallest amount and rate of decay, whereas the GFRP-reinforced cable demonstrated the largest.

      • KCI등재

        Three-Dimensional Hierarchically Ternary Iron Tungsten Nitride Nanosheets with Slight Ratio of Nickel Modulation for Oxygen Evolution Reaction

        Xuyang Zhang,Hangjia Shen,Babak Rezaei Moghadam,Siqi Liu,Yuejin Zhu,Jiacheng Wang,Minghui Yang 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2019 NANO Vol.14 No.7

        Practical application of oxygen evolution reaction (OER) in energy conversion devices, such as water splitting and metal-air batteries, relies on the development of highly efficient and stable electrocatalysts and is still challengeable. Here, Nickel modulated ternary Iron tungsten nitride (Ni-FeWN2) nanosheets are synthesized through a facile hydrothermal growth method and subsequently nitriding process for boosting OER. A potential of 1.57V at the current density of 10 mA/cm2 and Tafel slope (40 mV/dec) are achieved on Ni-FeWN2, much lower than that on Ni-free FeWN2 and commercial IrO2. More importantly, Ni-FeWN2 nanosheets display high stability and electrocatalytic activity toward driving oxygen evolution efficiently in alkaline media.

      • KCI등재

        Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses

        Jingyu Zhang,Jiacheng Zhu,Shurong Ding,Liang Chen,Wenjie Li,Hua Pang 한국원자력학회 2018 Nuclear Engineering and Technology Vol.50 No.7

        Delayed hydride cracking (DHC) is an important failure mechanism for Zircaloy tubes in the demandingenvironment of nuclear reactors. The threshold stress intensity factor, KIH, and critical hydride length, lC ,are important parameters to evaluate DHC. Theoretical models of them are developed for Zircaloy tubesundergoing non-homogenous temperature loading, with new stress distributions ahead of the crack tipand thermal stresses involved. A new stress distribution in the plastic zone ahead of the crack tip isproposed according to the fracture mechanics theory of second-order estimate of plastic zone size. Thedeveloped models with fewer fitting parameters are validated with the experimental results for KIH andlC. The research results for radial cracking cases indicate that a better agreement for KIH can be achieved;the negative axial thermal stresses can lessen KIH and enlarge the critical hydride length, so its effectshould be considered in the safety evaluation and constraint design for fuel rods; the critical hydridelength lC changes slightly in a certain range of stress intensity factors, which interprets the phenomenonthat the DHC velocity varies slowly in the steady crack growth stage. Besides, the sensitivity analysis ofmodel parameters demonstrates that an increase in yield strength of zircaloy will result in a decrease inthe critical hydride length lC , and KIH will firstly decrease and then have a trend to increase with the yieldstrength of Zircaloy; higher fracture strength of hydrided zircaloy will lead to very high values ofthreshold stress intensity factor and critical hydride length at higher temperatures, which might be themain mechanism of crack arrest for some Zircaloy materials

      • KCI등재

        Surface Centroid TOA Location Algorithm for VLC System

        ( Yuexia Zhang ),( Hang Chen ),( Shuang Chen ),( Jiacheng Jin ) 한국인터넷정보학회 2019 KSII Transactions on Internet and Information Syst Vol.13 No.1

        The demand for indoor positioning is increasing day by day. However, the widely used positioning methods today cannot satisfy the requirements of the indoor environment in terms of the positioning accuracy and deployment cost. In the existing research domain, the localization algorithm based on three-dimensional space is less accurate, and its robustness is not high. Visible light communication technology (VLC) combines lighting and positioning to reduce the cost of equipment deployment and improve the positioning accuracy. Further, it has become a popular research topic for telecommunication and positioning in the indoor environment. This paper proposes a surface centroid TOA localization algorithm based on the VLC system. The algorithm uses the multiple solutions estimated by the trilateration method to form the intersecting planes of the spheres. Then, it centers the centroid of the surface area as the position of the unknown node. Simulation results show that compared with the traditional TOA positioning algorithm, the average positioning error of the surface centroid TOA algorithm is reduced by 0.3243 cm and the positioning accuracy is improved by 45%. Therefore, the proposed algorithm has better positioning accuracy than the traditional TOA positioning algorithm, and has certain application value.

      • KCI등재

        An LED SAHP-based Planar Projection PTCDV-hop Location Algorithm

        ( Yuexia Zhang ),( Hang Chen ),( Jiacheng Jin ) 한국인터넷정보학회 2019 KSII Transactions on Internet and Information Syst Vol.13 No.9

        This paper proposes a planar projection DV-hop location algorithm (PTCDV-hop) based on the LED semi-angle at half power (SAHP, which accounts for LED SAHP characteristics in visible light communication (VLC)) and uses the DV-hop algorithm for range-free localization. Distances between source nodes and nodes positioned in three-dimensional indoor space are projected onto a two-dimensional plane to reduce complexity. Circles are structured by assigning source nodes (projected onto the horizontal plane of the assigned nodes) to be centers and the projection distances as radii. The proposed PTCDV-hop algorithm then determines the position of node location coordinates using the trilateral-weighted-centroid algorithm. Simulation results show localization errors of the proposed algorithm are on the order of magnitude of a millimeter when three sources are used. The PTCDV-hop algorithm has higher positioning accuracy and stronger dominance than the traditional DV-hop algorithm.

      • KCI등재

        Indoor 3D Dynamic Reconstruction Fingerprint Matching Algorithm in 5G Ultra-Dense Network

        ( Yuexia Zhang ),( Jiacheng Jin ),( Chong Liu ),( Pengfei Jia ) 한국인터넷정보학회 2021 KSII Transactions on Internet and Information Syst Vol.15 No.1

        In the 5G era, the communication networks tend to be ultra-densified, which will improve the accuracy of indoor positioning and further improve the quality of positioning service. In this study, we propose an indoor three-dimensional (3D) dynamic reconstruction fingerprint matching algorithm (DSR-FP) in a 5G ultra-dense network. The first step of the algorithm is to construct a local fingerprint matrix having low-rank characteristics using partial fingerprint data, and then reconstruct the local matrix as a complete fingerprint library using the FPCA reconstruction algorithm. In the second step of the algorithm, a dynamic base station matching strategy is used to screen out the best quality service base stations and multiple sub-optimal service base stations. Then, the fingerprints of the other base station numbers are eliminated from the fingerprint database to simplify the fingerprint database. Finally, the 3D estimated coordinates of the point to be located are obtained through the K-nearest neighbor matching algorithm. The analysis of the simulation results demonstrates that the average relative error between the reconstructed fingerprint database by the DSR-FP algorithm and the original fingerprint database is 1.21%, indicating that the accuracy of the reconstruction fingerprint database is high, and the influence of the location error can be ignored. The positioning error of the DSR-FP algorithm is less than 0.31 m. Furthermore, at the same signal-to-noise ratio, the positioning error of the DSR-FP algorithm is lesser than that of the traditional fingerprint matching algorithm, while its positioning accuracy is higher.

      • KCI등재

        Power extraction performance of two semi-active flapping airfoils at biplane configuration

        Jianyang Zhu,Jiacheng Zhang 대한기계학회 2020 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.34 No.1

        The power extraction performance of two semi-active flapping airfoils at biplane configuration is analyzed in this work through numerical approach. Two NACA0015 airfoils, which are regarded as an energy extraction turbine, are arranged in a biplane configuration to perform forced counter pitching motion and are subsequently induced in a plunging motion. A numerical code based on finite volume method to solve the Navier–Stokes equations coupled with finite center difference method to solve the passive plunging motion governing equation is developed to simulate the interaction between the two semi-active flapping airfoils and fluid. Results show that the semi-active flapping airfoil cannot absorb more power from the fluid with biplane arrangement, but this arrangement is beneficial for the power extraction efficiency of the airfoil. Analysis of the fluid field of the airfoil reveals that the wing–wing interaction can promote the vortex evolution and reduce the vortex magnitude of the suction side of the biplane airfoils with appropriate initial distance (h s = 2.5d). As a result, the maximum plunging of the biplane airfoils is smaller than that of the single airfoil. The smaller maximum plunging displacement contributes to the increase in power extraction efficiency.

      • KCI등재

        Anti-rollover of the counterbalanced forklift truck based on model predictive control

        Guang Xia,Jiacheng Li,Xiwen Tang,Yang Zhang,Jinfang Hu 대한기계학회 2021 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.35 No.5

        To reduce the probability of a rollover accident of a forklift during high-speed steering, a hydraulic support cylinder is designed as an actuator to provide lateral support for the forklift. Aiming at the problem of judging the safety domain in the process of forklift driving, this paper proposes a strategy for dividing the forklift’s driving state on the basis of the zero moment point. The relationship between the zero moment point’s lateral component and the forklift’s support plane is used as the basis for division. The forklift rollover process is divided into a safe stage, a controllable danger stage, and a critical rollover stage. In the safe stage, the cylinder does not provide support force, and in the controllable danger stage, the cylinder support force is adjusted on the basis of the model predictive control algorithm to adjust the forklift. The cylinder can be controlled to provide maximum support for the body during the critical rollover phase. This method takes the three-degrees-of-freedom forklift anti-rollover model as the control object and serves as the basis for the calculation of the zero moment point. The anti-rollover controller is built in MATLAB/Simulink to simulate the European standard operating conditions and to verify the actual vehicle test. Results show that the predictive control of the forklift anti-rollover model based on the zero moment point can effectively improve the body attitude of the forklift during high-speed steering and prevent the forklift from rolling over.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼