RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Magnetic Resonance Imaging: Historical Overview, Technical Developments, and Clinical Applications

        Jahng, Geon-Ho,Park, Soonchan,Ryu, Chang-Woo,Cho, Zang-Hee Korean Society of Medical Physics 2020 의학물리 Vol.31 No.3

        The authors congratulate the cerebrations for the 30 years of the Korean Society of Medical Physics (http://www.ksmp.or.kr/). The paper is published to recognize the anniversary. Geon-Ho Jahng invited Professor Z. H. Cho to join to submit this manuscript because he has been one of the leaders in the field of magnetic resonance imaging (MRI) during the last 40 years. In this review, we describe the development and clinical histories of MRI internationally and domestically. We also discuss diffusion and perfusion MRI, molecular imaging using MRI and MR spectroscopy (MRS), and the hybrid systems, such as positron emission tomography-MRI (PET-MRI), MR-guided focused ultrasound surgery (MRgFUS), and MRI-guided linear accelerators (MRI-LINACs). In each part, we discuss the historical evolution of the developments, technical developments, and clinical applications.

      • Local susceptibility causes diffusion alterations in patients with Alzheimer's disease and mild cognitive impairment.

        Jahng, Geon-Ho,Xu, Songfan Springer New York LLC 2012 BRAIN IMAGING AND BEHAVIOR Vol.6 No.3

        <P>Recent studies with positron emission tomography (PET) using the Pittsburgh compound B (PIB) found widespread amyloid plaque depositions in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) and even in cognitively normal (CN) subjects. The aim of this study was to investigate whether the local susceptibility gradients in brain tissue alter regional diffusion measurements using MRI in patients with AD and MCI. Two diffusion tensor (DT)-MRI data sets were acquired with alternating polarities of the external diffusion-sensitizing gradients. Three subject groups were included: 15 patients with AD, 18 patients with MCI and 16 CN. Maps of mean diffusivity (MD) and fractional anisotropy (FA) were computed separately for positive (p) and negative (n) polarities (pMD and nMD, pFA and nFA). Voxel-wise paired t-tests were performed between pMD versus nMD or between pFA versus nFA maps, separately for each subject group. We also investigated regions-of-interest (ROIs) in the brain. Based on the pair-wise comparisons, we found significant differences between pMD and nMD in all three groups. Results of ROI-based analyses showed that the non-linear behaviors of the ROI data sets were shown for all three groups. In conclusion, significant differences of MD maps between the two polarities of diffusion-sensitizing gradients were found, suggesting that the intrinsic background gradients may alter MD signals in specific regions. It can be important to take into account the effects of local gradient alterations during diffusion measurements in patients with AD, MCI and elderly controls.</P>

      • KCI등재

        Physical Modeling of Chemical Exchange Saturation Transfer Imaging

        Jahng, Geon-Ho,Oh, Jang-Hoon Korean Society of Medical Physics 2017 의학물리 Vol.28 No.4

        Chemical Exchange Saturation Transfer (CEST) imaging is a method to detect solutes based on the chemical exchange of mobile protons with water. The solute protons exchange with three different patterns, which are fast, slow, and intermediate rates. The CEST contrast can be obtained from the exchangeable protons, which are hydroxyl protons, amine protons, and amide protons. The CEST MR imaging is useful to evaluate tumors, strokes, and other diseases. The purpose of this study is to review the mathematical model for CEST imaging and for measurement of the chemical exchange rate, and to measure the chemical exchange rate using a 3T MRI system on several amino acids. We reviewed the mathematical models for the proton exchange. Several physical models are proposed to demonstrate a two-pool, three-pool, and four-pool models. The CEST signals are also evaluated by taking account of the exchange rate, pH and the saturation efficiency. Although researchers have used most commonly in the calculation of CEST asymmetry, a quantitative analysis is also developed by using Lorentzian fitting. The chemical exchange rate was measured in the phantoms made of asparagine (Asn), glutamate (Glu), ${\gamma}-aminobutyric$ acid (GABA), glycine (Gly), and myoinositol (MI). The experiment was performed at a 3T human MRI system with three different acidity conditions (pH 5.6, 6.2, and 7.4) at a concentration of 50 mM. To identify the chemical exchange rate, the "lsqcurvefit" built-in function in MATLAB was used to fit the pseudo-first exchange rate model. The pseudo-first exchange rate of Asn and Gly was increased with decreasing acidity. In the case of GABA, the largest result was observed at pH 6.2. For Glu, the results at pH 5.6 and 6.2 did not show a significant difference, and the results at pH 7.4 were almost zero. For MI, there was no significant difference at pH 5.6 or 7.4, however, the results at pH 6.2 were smaller than at the other pH values. For the experiment at 3T, we were only able to apply 1 s as the maximum saturation duration due to the limitations of the MRI system. The measurement of the chemical exchange rate was limited in a clinical 3T MRI system because of a hardware limitation.

      • KCI등재

        Multi-slice Multi-echo Pulsed-gradient Spin-echo (MePGSE) Sequence for Diffusion Tensor Imaging MRI: A Preliminary Result

        장건호,Jahng, Geon-Ho,Pickup, Stephen Korean Society of Medical Physics 2007 의학물리 Vol.18 No.2

        대부분의 임상용 자기공명영상 장치에서 확산텐서(difiusion tensor) 영상을 얻기 위하여 에코플렌(EPI) 스핀에코(spin-echo) 시퀀스를 사용한다. 하지만 이 영상법은 자화감수성에 매우 예민한 단점이 있다. 따라서 본 연구의 목적은 자화감수성에 의해 발생하는 영상의 변질을 최소화하면서 확산텐서를 한번에 얻을 수 있는 시퀀스를 개발하는데 있다. 모든 확산 텐서 성분을 한번에 얻기 위하여 다편(multi-slice) 8에코 스핀에코 시퀀스(MePGSE)가 개발되었다. 모든 180도 펄스는 기존에 사용된 방법과는 달리 선택된(slice selective) 경사자장을 이용하였다. 처음 7개의 에코 영상은 확산텐서 영상을 위하여 사용하였고, 마지막 에코 영상에서는 영상을 얻는 경사자장은 사용하지 않고 남아있는 자화를(residual magnetization) 최소화하기 위하여 삼차원 경사자장(crusher gradients)만을 사용하였다. 따라서 6개의 텐서 성분을 단 한번의 실험에 의하여 얻을 수 있었다. 이 시퀀스를 사용하여 물과 수박을 이용하여 실험을 하였으며 물에서의 확산 값이 기존에 출판된 값과 유사하게 나타나 본 연구에서 MePGSE 시퀀스의 신뢰를 가질 수 있었다. An echo planar imaging (EPI)-based spin-echo sequence Is often used to obtain diffusion tensor imaging (DTI) data on most of the clinical MRI systems, However, this sequence is confounded with the susceptibility artifacts, especially on the temporal lobe in the human brain. Therefore, the objective of this study was to design a pulse sequence that relatively immunizes the susceptibility artifacts, but can map diffusion tensor components in a single-shot mode. A multi-slice multi-echo pulsed-gradient spin-echo (MePGSE) sequence with eight echoes wasdeveloped with selective refocusing pulses for all slices to map the full tensor. The first seven echoes in the train were diffusion-weighted allowing for the observation of diffusion in several different directions in a single experiment and the last echo was for crusher of the residual magnetization. All components of diffusion tensor were measured by a single shot experiment. The sequence was applied in diffusive phantoms. The preliminary experimental verification of the sequence was illustrated by measuring the apparent diffusion coefficient (ADC) for tap water and by measuring diffusion tensor components for watermelon. The ADC values in the series of the water phantom were reliable. The MePGSE sequence, therefore, may be useful in human brain studies.

      • KCI등재

        Practical Considerations of Arterial Spin Labeling MRI for Measuring the Multi-slice Perfusion in the Human Brain

        장건호,Jahng, Geon-Ho Korean Society of Medical Physics 2007 의학물리 Vol.18 No.1

        본 연구의 목적은 비침습적 동맥스핀라벨링(arterial spin labeling) 자기공명영상을 이용하여 다편(multislice) 뇌 관류영상(perfusion-weighted Images)을 얻을 수 있는 최적화 방법을 연구하는 데 목적이 있다. 본 연구에서는 세 가지 인자를 최적화하는 데 초점을 두었다. 첫째, 뇌로 흘러 들어오는 혈액을 최적으로 라벨링할 수 있는 펄스를 만드는 것이다. 시뮬레이션 결과 900도의 각을 이루는 반전펄스(adiabatic hyperbolic secant Inversion pulse)는 반전을 효과적으로 할 수 있고 반전을 이루는 형태가 직각에 가깝게 할 수 있는 최적이었다. 둘째, 영상을 얻고 난 후에 계속하여 남아 있는 자화(residual magnetization)을 최소화하는 것이다. 이를 최소화하기 위해서는 포화 펄스(saturation pulses)와 자화를 손상시키는 자장(speller gradients)을 동시에 사용하는 것이 최상의 방법임을 알았다. 마지막으로, 라벨링하는 영역과 영상을 얻는 영역 사이의 거리를 최소화할 수 있는 방법을 연구하였다. 두 영역 간의 최소 거리는 약 20 mm 정도가 최적임을 발견하였다. 위에서 얻은 최적화된 인자들을 바탕으로 13명의 정상인의 뇌에서 관류 영상을 얻은 결과 매우 좋은 대조도의 영상을 얻을 수 있었다. In this work practical considerations of a pulsed arterial spin labeling MRI are presented to reliable multi-slice perfusion measurements In the human brain. Three parameters were considered in this study. First, In order to improve slice profile and Inversion efficiency of a labeling pulse a high power Inversion pulse of adiabatic hyperbolic secant was designed. A $900^{\circ}$ rotation of the flip angle was provided to make a good slice profile and excellent Inversion efficiency. Second, to minimize contributions of a residual magnetization be4ween Interleaved scans of control and labeling we tested three different conditions which were applied 1) only saturation pulses, 2) only spotter gradients, and 3) combinations of saturation pulses and spotter gradients Applications of bo4h saturation pulses and spoiler gradients minimized the residual magnetization. Finally, to find a minimum gap between a tagged plane and an imaging plane we tested signal changes of the subtracted image between control and labeled Images with varying the gap. The optimum gap was about 20mm. In conclusion, In order to obtain high quality of perfusion Images In human brain It Is Important to use optimum parameters. Before routinely using In clinical studios, we recommend to make optimizations of sequence parameters.

      • KCI등재

        Development of 3D Mapping Algorithm with Non Linear Curve Fitting Method in Dynamic Contrast Enhanced MRI

        Yoon Seong-Ik,Jahng Geon-Ho,Khang Hyun-Soo,Kim Young-Joo,Choe Bo-Young Korean Magnetic Resonance Society 2005 Journal of the Korean Magnetic Resonance Society Vol.9 No.2

        Purpose: To develop an advanced non-linear curve fitting (NLCF) algorithm for dynamic susceptibility contrast study of brain. Materials and Methods: The first pass effects give rise to spuriously high estimates of $K^{trans}$ in voxels with large vascular components. An explicit threshold value has been used to reject voxels. Results: By using this non-linear curve fitting algorithm, the blood perfusion and the volume estimation were accurately evaluated in T2*-weighted dynamic contrast enhanced (DCE)-MR images. From the recalculated each parameters, perfusion weighted image were outlined by using modified non-linear curve fitting algorithm. This results were improved estimation of T2*-weighted dynamic series. Conclusion: The present study demonstrated an improvement of an estimation of kinetic parameters from dynamic contrast-enhanced (DCE) T2*-weighted magnetic resonance imaging data, using contrast agents. The advanced kinetic models include the relation of volume transfer constant $K^{trans}\;(min^{-1})$ and the volume of extravascular extracellular space (EES) per unit volume of tissue $\nu_e$.

      • SCISCIESCOPUS
      • KCI등재

        b0 Dependent Neuronal Activation in the Diffusion-Based Functional MRI

        Kim, Hyug-Gi,Jahng, Geon-Ho Korean Society of Medical Physics 2019 의학물리 Vol.30 No.1

        Purpose: To develop a new diffusion-based functional MRI (fMRI) sequence to generate apparent diffusion coefficient (ADC) maps in single excitation and evaluate the contribution of b0 signal on neuronal changes. Materials and Methods: A diffusion-based fMRI sequence was designed with single measurement that can acquire images of three directions at a time, obtaining $b=0s/mm^2$ during the first baseline condition (b0_b), followed by 107 diffusion-weighted imaging (DWI) with $b=600s/mm^2$ during the baseline and visual stimulation conditions, and another $b=0s/mm^2$ during the last activation condition (b0_a). ADC was mapped in three different ways: 1) using b0_b (ADC_b) for all time points, 2) using b0_a (ADC_a) for all time points, and 3) using b0_b and b0_a (ADC_ba) for baseline and stimulation scans, respectively. The fMRI studies were conducted on the brains of 16 young healthy volunteers using visual stimulations in a 3T MRI system. In addition, the blood oxygen level dependent (BOLD) fMRI was also acquired to compare it with diffusion-based fMRI. A sample t-test was used to investigate the voxel-wise average between the subjects. Results: The BOLD data consisted of only activated voxels. However, ADC_ba data was observed in both deactivated and activated voxels. There were no statistically significant activated or deactivated voxels for DWI, ADC_b, and ADC_a. Conclusions: With the new sequence, neuronal activations can be mapped with visual stimulation as compared to the baseline condition in several areas in the brain. We showed that ADC should be mapped using both DWI and b0 images acquired with the same conditions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼