RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Cortical Thinning in High-Grade Asymptomatic Carotid Stenosis

        Randolph S. Marshall,David S. Liebeskind,John Huston III,Lloyd J. Edwards,George Howard,James F. Meschia,Thomas G. Brott,Brajesh K. Lal,Donald Heck,Giuseppe Lanzino,Navdeep Sangha,Vikram S. Kashyap,Cl 대한뇌졸중학회 2023 Journal of stroke Vol.25 No.1

        Background and Purpose High-grade carotid artery stenosis may alter hemodynamics in the ipsilateral hemisphere, but consequences of this effect are poorly understood. Cortical thinning is associated with cognitive impairment in dementia, head trauma, demyelination, and stroke. We hypothesized that hemodynamic impairment, as represented by a relative time-to-peak (TTP) delay on MRI in the hemisphere ipsilateral to the stenosis, would be associated with relative cortical thinning in that hemisphere. Methods We used baseline MRI data from the NINDS-funded Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis–Hemodynamics (CREST-H) study. Dynamic contrast susceptibility MR perfusion-weighted images were post-processed with quantitative perfusion maps using deconvolution of tissue and arterial signals. The protocol derived a hemispheric TTP delay, calculated by subtraction of voxel values in the hemisphere ipsilateral minus those contralateral to the stenosis. Results Among 110 consecutive patients enrolled in CREST-H to date, 45 (41%) had TTP delay of at least 0.5 seconds and 9 (8.3%) subjects had TTP delay of at least 2.0 seconds, the maximum delay measured. For every 0.25-second increase in TTP delay above 0.5 seconds, there was a 0.006-mm (6 micron) increase in cortical thickness asymmetry. Across the range of hemodynamic impairment, TTP delay independently predicted relative cortical thinning on the side of stenosis, adjusting for age, sex, hypertension, hemisphere, smoking history, low-density lipoprotein cholesterol, and preexisting infarction (P=0.032). Conclusions Our findings suggest that hemodynamic impairment from high-grade asymptomatic carotid stenosis may structurally alter the cortex supplied by the stenotic carotid artery.

      • SCISCIESCOPUS

        Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system

        Tao, S,Trzasko, J D,Gunter, J L,Weavers, P T,Shu, Y,Huston III, J,Lee, S K,Tan, E T,Bernstein, M A Institute of Physics in association with the Ameri 2017 Physics in medicine & biology Vol.62 No.2

        <P>Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to conventional whole-body gradients. The even-order terms were necessary for accurate GNL modeling. In addition, the calibrated coefficients improved image geometric accuracy compared with the simulation-based coefficients.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼