RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fatigue analysis of partly damaged RC slabs repaired with overlaid UHPFRC

        Pengru Deng,Ko Kakuma,Hiroshi Mitamura,Takashi Matsumoto 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.75 No.1

        Due to repetitive traffic loadings and environmental attacks, reinforced concrete (RC) bridge deck slabs are suffering from severe degradation, which makes structural repairing an urgency. In this study, the fatigue performance of an RC bridge deck repairing technique using ultra-high performance fiber reinforcement concrete (UHPFRC) overlay is assessed experimentally with a wheel-type loading set-up as well as analytically based on finite element method (FEM) using a crack bridging degradation concept. In both approaches, an original RC slab is firstly preloaded to achieve a partly damaged RC slab which is then repaired with UHPFRC overlay and reloaded. The results indicate that the developed analytical method can predict the experimental fatigue behaviors including displacement evolutions and crack patterns reasonably well. In addition, as the shear stress in the concrete/UHPFRC interface stays relatively low over the calculations, this interface can be simply simulated as perfect. Moreover, superior to the experiments, the numerical method provides fatigue behaviors of not only the repaired but also the unrepaired RC slabs. Due to the high strengths and cracking resistance of UHPFRC, the repaired slab exhibited a decelerated deterioration rate and an extended fatigue life compared with the unrepaired slab. Therefore, the proposed repairing scheme can afford significant strengthen effects and act as a reference for future practices and engineering applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼