RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Single-Molecule AFM Studies of Substrate Transport by Using the Sodium-Glucose Cotransporter SGLT1

        Theeraporn Puntheeranurak,Rolf K. H. Kinne,Hermann J. Gruber,Peter Hinterdorfer 한국물리학회 2008 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.52 No.5

        In an apical membrane of epithelial cells from the small intestine and the kidney, the high-affinity Na+/D-glucose cotransporter type 1 (SGLT1) plays a crucial role in intestinal glucose absorp- tion and in renal glucose reabsorption. Here, the over-expression of rabbit SGLT1 in rbSGLT1- transfected Chinese hamster ovary (CHO) cells was first characterized using the immuno-staining method on non-permeabilized cells. The cells were then imaged with atomic force microscopy (AFM), revealing live and fixed cells strongly attached to the glass surfaces. A bioconjugate chem- istry approach was employed to functionalize the surfaces of the AFM tips with D-glucose molecules via three dierent heterobifunctional crosslinkers. The D-glucose binding site and the translocation pathway of SGLT1 were investigated by studying the interaction forces between tip-bound D-glucose and SGLT1 in live cells on the single-molecule level. Analysis of these forces suggested that a long crosslinker with a small end group might be suitable for probing the D-glucose transport pathway of SGLT1. We show that single-molecule AFM technology is a powerful method for investigating transmembrane proteins and transporter functions in live cells. In an apical membrane of epithelial cells from the small intestine and the kidney, the high-affinity Na+/D-glucose cotransporter type 1 (SGLT1) plays a crucial role in intestinal glucose absorp- tion and in renal glucose reabsorption. Here, the over-expression of rabbit SGLT1 in rbSGLT1- transfected Chinese hamster ovary (CHO) cells was first characterized using the immuno-staining method on non-permeabilized cells. The cells were then imaged with atomic force microscopy (AFM), revealing live and fixed cells strongly attached to the glass surfaces. A bioconjugate chem- istry approach was employed to functionalize the surfaces of the AFM tips with D-glucose molecules via three dierent heterobifunctional crosslinkers. The D-glucose binding site and the translocation pathway of SGLT1 were investigated by studying the interaction forces between tip-bound D-glucose and SGLT1 in live cells on the single-molecule level. Analysis of these forces suggested that a long crosslinker with a small end group might be suitable for probing the D-glucose transport pathway of SGLT1. We show that single-molecule AFM technology is a powerful method for investigating transmembrane proteins and transporter functions in live cells.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼