RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Dynamic analysis and performance optimization of permendur cantilevered energy harvester

        Mojtaba Ghodsi,Hamidreza Ziaiefar,Morteza Mohammadzaheri,Farag K. Omar,Issam Bahadur 국제구조공학회 2019 Smart Structures and Systems, An International Jou Vol.23 No.5

        The development of the low power application such as wireless sensors and health monitoring systems, attract a great attention to low power vibration energy harvesters. The recent vibration energy harvesters use smart materials in their structures to convert ambient mechanical energy into electricity. The frequent model of this harvesters is cantilevered beam. In the literature, the base excitation cantilevered harvesters are mainly investigated, and the related models are presented. This paper investigates a tip excitation cantilevered beam energy harvester with permendur. In the first section, the mechanical model of the harvester and magneto-mechanical model of the permendur are presented. Later, to find the maximum output of the harvester, based on the response surface method (RSM), some experiments are done, and the results are analyzed. Finally, to verify the results of RSM, a harvester with optimum design variables is made, and its output power is compared. The last comparison verifies the estimation of the RSM method which was about 381 uW/cm3. The development of the low power application such as wireless sensors and health monitoring systems, attract a great attention to low power vibration energy harvesters. The recent vibration energy harvesters use smart materials in their structures to convert ambient mechanical energy into electricity. The frequent model of this harvesters is cantilevered beam. In the literature, the base excitation cantilevered harvesters are mainly investigated, and the related models are presented. This paper investigates a tip excitation cantilevered beam energy harvester with permendur. In the first section, the mechanical model of the harvester and magneto-mechanical model of the permendur are presented. Later, to find the maximum output of the harvester, based on the response surface method (RSM), some experiments are done, and the results are analyzed. Finally, to verify the results of RSM, a harvester with optimum design variables is made, and its output power is compared. The last comparison verifies the estimation of the RSM method which was about 381 µW/cm3.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼