RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The effective stiffness of an embedded graphene in a polymeric matrix

        Seyed Mostafa Rahimian-Koloor,Hadi Moshrefzadeh-Sani,Seyed Majid Hashemianzadeh,Mahmood Mehrdad Shokrieh 한국물리학회 2018 Current Applied Physics Vol.18 No.5

        Modeling the real sizes of an embedded graphene and the surrounding polymer of a representative volume element in a molecular dynamics simulation is a tedious task. The less computational limitations made the continuum-based method a good candidate for modeling of nanocomposites. However, having a good knowledge of mechanical properties of the embedded graphene in a polymeric matrix is a challenge for employing a continuum-based method. Since the applied stress on the graphene/epoxy nanocomposites has not been directly transferred to the embedded graphene, it brings the following question to mind. Is the stiffness of the embedded graphene different from that of the isolated one? To answer to this question, a model was developed by combining the molecular dynamic simulation and the finite element method to calculate the stiffness of an embedded graphene in a polymeric matrix. The results show that the longitudinal stiffness of the embedded graphene is different from that of the isolated graphene and is a function of its length. The use of this relationship in the micromechanical method leads to consider the nanosize effect in macroscale. The results were compared with some available experimental data to validate the model.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼