RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Association of chairside salivary aMMP-8 findings with periodontal risk assessment parameters in patients receiving supportive periodontal therapy

        Gerhard Schmalz,Max Kristian Kummer,Tanja Kottmann,Sven Rinke,Rainer Haak,Felix Krause,Jana Schmidt,Dirk Ziebolz 대한치주과학회 2018 Journal of Periodontal & Implant Science Vol.48 No.4

        Purpose: The aim of this retrospective cross-sectional study was to evaluate whether salivary findings of active matrix-metalloproteinase 8 (aMMP-8) chairside (point of care; POC) tests were associated with periodontal risk assessment parameters in patients receiving supportive periodontal therapy (SPT). Methods: A total of 125 patients receiving regular SPT were included, and their records were examined. The following inclusion criteria were used: a diagnosis of chronic periodontitis, at least 1 non-surgical periodontal treatment (scaling and root planning) with following regular SPT (minimum once a year), at least 6 remaining teeth, and clinical and aMMP-8 findings that were obtained at the same appointment. In addition to anamnestic factors (e.g., smoking and diabetes), oral hygiene indices (modified sulcus bleeding index [mSBI] and approximal plaque index), periodontal probing depth simultaneously with bleeding on probing, and dental findings (number of decayed, missing, and filled teeth) were recorded. Salivary aMMP-8 levels were tested using a commercial POC test system (Periomarker, Hager & Werken, Duisburg, Germany). Statistical analysis was performed using the t-test, Mann-Whitney U test, Fisher's exact test, and χ2 test, as appropriate (P<0.05). Results: Only the mSBI was significantly associated with positive salivary aMMP-8 findings (aMMP-8 positive: 27.8%±20.9% vs. aMMP-8 negative: 18.0%±14.5%; P=0.017). No significant associations were found between aMMP-8 and smoking, diabetes, periodontal parameters, or parameters related to the maintenance interval (P>0.05). Conclusions: Salivary aMMP-8 chairside findings were not associated with common parameters used for periodontal risk assessment in patients receiving SPT. The diagnostic benefit of POC salivary aMMP-8 testing in risk assessment and maintenance interval adjustment during SPT remains unclear. Keywords: Maintenance; Metalloproteinase

      • SCIESCOPUSKCI등재

        Association of chairside salivary aMMP-8 findings with periodontal risk assessment parameters in patients receiving supportive periodontal therapy

        Schmalz, Gerhard,Kummer, Max Kristian,Kottmann, Tanja,Rinke, Sven,Haak, Rainer,Krause, Felix,Schmidt, Jana,Ziebolz, Dirk Korean Academy of Periodontology 2018 Journal of Periodontal & Implant Science Vol.48 No.4

        Purpose: The aim of this retrospective cross-sectional study was to evaluate whether salivary findings of active matrix-metalloproteinase 8 (aMMP-8) chairside (point of care; POC) tests were associated with periodontal risk assessment parameters in patients receiving supportive periodontal therapy (SPT). Methods: A total of 125 patients receiving regular SPT were included, and their records were examined. The following inclusion criteria were used: a diagnosis of chronic periodontitis, at least 1 non-surgical periodontal treatment (scaling and root planning) with following regular SPT (minimum once a year), at least 6 remaining teeth, and clinical and aMMP-8 findings that were obtained at the same appointment. In addition to anamnestic factors (e.g., smoking and diabetes), oral hygiene indices (modified sulcus bleeding index [mSBI] and approximal plaque index), periodontal probing depth simultaneously with bleeding on probing, and dental findings (number of decayed, missing, and filled teeth) were recorded. Salivary aMMP-8 levels were tested using a commercial POC test system (Periomarker, Hager & Werken, Duisburg, Germany). Statistical analysis was performed using the t-test, Mann-Whitney U test, Fisher's exact test, and ${\chi}^2$ test, as appropriate (P<0.05). Results: Only the mSBI was significantly associated with positive salivary aMMP-8 findings (aMMP-8 positive: $27.8%{\pm}20.9%$ vs. aMMP-8 negative: $18.0%{\pm}14.5%$; P=0.017). No significant associations were found between aMMP-8 and smoking, diabetes, periodontal parameters, or parameters related to the maintenance interval (P>0.05). Conclusions: Salivary aMMP-8 chairside findings were not associated with common parameters used for periodontal risk assessment in patients receiving SPT. The diagnostic benefit of POC salivary aMMP-8 testing in risk assessment and maintenance interval adjustment during SPT remains unclear.

      • KCI등재

        Risk indicators for mucositis and peri-implantitis: results from a practice-based cross-sectional study

        Sven Rinke,Marc Nordlohne,Andreas Leha,Stefan Renvert,Gerhard Schmalz,Dirk Ziebolz 대한치주과학회 2020 Journal of Periodontal & Implant Science Vol.50 No.3

        Purpose: This practice-based cross-sectional study aimed to investigate whether common risk indicators for peri-implant diseases were associated with peri-implant mucositis and peri-implantitis in patients undergoing supportive implant therapy (SIT) at least 5 years after implant restoration. Methods: Patients exclusively restored with a single implant type were included. Probing pocket depth (PPD), bleeding on probing (BOP), suppuration, and radiographic bone loss (RBL) were assessed around implants. The case definitions were as follows: peri-implant mucositis: PPD ≥4 mm, BOP, no RBL; and peri-implantitis: PPD ≥5 mm, BOP, RBL ≥3.5 mm. Possible risk indicators were compared between patients with and without mucositis and peri-implantitis using the Fisher exact test and the Wilcoxon rank-sum test, as well as a multiple logistic regression model for variables showing significance (P<0.05). Results: Eighty-four patients with 169 implants (observational period: 5.8±0.86 years) were included. A patient-based prevalence of 52% for peri-implant mucositis and 18% for peri-implantitis was detected. The presence of 3 or more implants (odds ratio [OR], 4.43; 95 confidence interval [CI], 1.36–15.05; P=0.0136) was significantly associated with an increased risk for mucositis. Smoking was significantly associated with an increased risk for peri-implantitis (OR, 5.89; 95% CI, 1.27–24.58; P=0.0231), while the presence of keratinized mucosa around implants was associated with a lower risk for peri-implantitis (OR, 0.05; 95% CI, 0.01–0.25; P<0.001). Conclusions: The number of implants should be considered in strategies to prevent mucositis. Furthermore, smoking and the absence of keratinized mucosa were the strongest risk indicators for peri-implantitis in patients undergoing SIT in the present study.

      • SCIESCOPUSKCI등재

        Risk indicators for mucositis and peri-implantitis: results from a practice-based cross-sectional study

        Rinke, Sven,Nordlohne, Marc,Leha, Andreas,Renvert, Stefan,Schmalz, Gerhard,Ziebolz, Dirk Korean Academy of Periodontology 2020 Journal of Periodontal & Implant Science Vol.50 No.3

        Purpose: This practice-based cross-sectional study aimed to investigate whether common risk indicators for peri-implant diseases were associated with peri-implant mucositis and peri-implantitis in patients undergoing supportive implant therapy (SIT) at least 5 years after implant restoration. Methods: Patients exclusively restored with a single implant type were included. Probing pocket depth (PPD), bleeding on probing (BOP), suppuration, and radiographic bone loss (RBL) were assessed around implants. The case definitions were as follows: peri-implant mucositis: PPD ≥4 mm, BOP, no RBL; and peri-implantitis: PPD ≥5 mm, BOP, RBL ≥3.5 mm. Possible risk indicators were compared between patients with and without mucositis and peri-implantitis using the Fisher exact test and the Wilcoxon rank-sum test, as well as a multiple logistic regression model for variables showing significance (P<0.05). Results: Eighty-four patients with 169 implants (observational period: 5.8±0.86 years) were included. A patient-based prevalence of 52% for peri-implant mucositis and 18% for peri-implantitis was detected. The presence of 3 or more implants (odds ratio [OR], 4.43; 95 confidence interval [CI], 1.36-15.05; P=0.0136) was significantly associated with an increased risk for mucositis. Smoking was significantly associated with an increased risk for peri-implantitis (OR, 5.89; 95% CI, 1.27-24.58; P=0.0231), while the presence of keratinized mucosa around implants was associated with a lower risk for peri-implantitis (OR, 0.05; 95% CI, 0.01-0.25; P<0.001). Conclusions: The number of implants should be considered in strategies to prevent mucositis. Furthermore, smoking and the absence of keratinized mucosa were the strongest risk indicators for peri-implantitis in patients undergoing SIT in the present study.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼