RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Learning Control Strategy for Robot-assisted Bathing via Impedance Sliding Mode Technique With Non-repetitive Tasks

        Yuexuan Xu,Xin Guo,Bokai Xuan,Hao Sun,Gaowei Zhang,Jian Li,Xingyu Huo,Zhifeng Gu 제어·로봇·시스템학회 2024 International Journal of Control, Automation, and Vol.22 No.3

        This paper investigates an impedance-based iterative learning sliding mode control scheme for robotassisted bathing, taking into consideration scenarios with unknown model parameters. Initially, the utilization ofimpedance control is not confined to merely adjusting the desired trajectory but is also instrumental in ensuringactive compliance control during the robot-assisted bathing procedure. Furthermore, an iterative learning control(ILC) is devised to estimate the iteration-invariant dynamic parameters, which are intricate and challenging to precisely ascertain in practical applications. To mitigate the effect of divergent initial conditions in ILC, a trajectoryreconstruction method is introduced, thus ensuring the convergence of tracking errors even when starting from random initial states. Moreover, an adaptive sliding mode control mechanism is proposed to counteract non-parametricexternal disturbances and the torque generated through human-machine interaction during the bathing process. Theconvergence of the double closed-loop system in both the time and iterative domains is demonstrated through theapplication of the composite energy function method. Eventually, the efficacy and superiority of the control strategyoutlined in this paper are jointly verified through co-simulation employing MATLAB and ADAMS.

      • SCIESCOPUSKCI등재

        Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

        Gao, Wei,Chen, Aodong,Zhang, Bowen,Kong, Ping,Liu, Chenli,Zhao, Jie Asian Australasian Association of Animal Productio 2015 Animal Bioscience Vol.28 No.4

        This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen microorganisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼