RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Angiotensin I-converting Enzyme Inhibitory Activities of Porcine Skeletal Muscle Proteins Following Enzyme Digestion

        Katayama, K.,Fuchu, H.,Sakata, A.,Kawahara, S.,Yamauchi, K.,Kawamura, Y.,Muguruma, M. Asian Australasian Association of Animal Productio 2003 Animal Bioscience Vol.16 No.3

        Inhibitory activities against angiotensin I-converting enzyme (ACE) of enzymatic hydrolysates of porcine skeletal muscle proteins were investigated. Myosin B, myosin, actin, tropomyosin, troponin and water-soluble proteins extracted from pork loin were digested by eight kinds of proteases, including pepsin, $\alpha$-chymotrypsin, and trypsin. After digestion, hydrolysates produced from all proteins showed ACE inhibitory activities, and the peptic hydrolysate showed the strongest activity. In the case of myosin B, the molar concentration of peptic hydrolysate required to inhibit 50% of the activity increased gradually as digestion proceeded. The hydrolysates produced by sequential digestion with pepsin and $\alpha$-chymotrypsin, pepsin and trypsin or pepsin and pancreatin showed weaker activities than those by pepsin alone, suggesting that ACE inhibitory peptides from peptic digestion might lose their active sequences after digestion by the second protease. However, the hydrolysates produced by sequential digestion showed stronger activities than those by $\alpha$-chymotrypsin, trypsin or pancreatin alone. These results suggested that the hydrolysates of porcine meat were able to show ACE inhibitory activity, even if they were digested in vivo, and that pork might be a useful source of physiologically functional factors.

      • SCIESCOPUSKCI등재

        Peptic Hydrolysate of Porcine Crude Myosin Has Many Active Fractions Inhibiting Angiotensin I-converting Enzyme

        Katayama, Kazunori,Fuchu, Hidetaka,Sugiyama, Masaaki,Kawahara, Satoshi,Yamauchi, Kiyoshi,Kawamura, Yukio,Muguruma, Michio Asian Australasian Association of Animal Productio 2003 Animal Bioscience Vol.16 No.9

        In order to clarify one of the biological functions of pork, we investigated whether a peptic hydrolysate of denatured porcine crude myosin showed inhibitory activity against angiotensin I-converting enzyme (ACE), which contributed to hypertension. Our results indicated that this hydrolysate showed relatively strong activity, and we therefore attempted to separate the involved peptides, which were considered to be active substances. To isolate these active peptides, the hydrolysate was separated using a solidphase separation, gel filtration high-performance liquid chromatography (HPLC), and two kinds of reverse phase HPLC. In each stage of separation, many fractions were detected, almost all of which showed ACE inhibitory activity. Thus, we suggested that the activity of the hydrolysate as a whole was a result of the activities of the many individual peptides. Six peaks were distinguished, with yields from 34 to 596 ppm of original crude myosin. In addition to the six peaks, many other active fractions were found throughout the separation steps, strongly suggesting that whole porcine crude myosin itself had ACE inhibitory activity. Moreover, pork as food was considered to function as an ACE inhibitory material in vivo, because pork proteins consist primarily of crude myosin, which included almost all the myofibrillar structural proteins.

      • Quest for Missing Proteins: Update 2015 on Chromosome-Centric Human Proteome Project

        Horvatovich, Pé,ter,Lundberg, Emma K.,Chen, Yu-Ju,Sung, Ting-Yi,He, Fuchu,Nice, Edouard C.,Goode, Robert J.,Yu, Simon,Ranganathan, Shoba,Baker, Mark S.,Domont, Gilberto B.,Velasquez, Erika,Li, D American Chemical Society 2015 Journal of Proteome Research Vol.14 No.9

        <P>This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed “missing proteins”) in biological samples that lack sufficient experimental evidence at the protein level for confident protein identification. The C-HPP also aims to identify new protein forms that may be caused by genetic variability, post-translational modifications, and alternative splicing. Proteogenomic data integration forms the basis of the C-HPP’s activities; therefore, we have summarized some of the key approaches and their roles in the project. We present new analytical technologies that improve the chemical space and lower detection limits coupled to bioinformatics tools and some publicly available resources that can be used to improve data analysis or support the development of analytical assays. Most of this paper’s content has been compiled from posters, slides, and discussions presented in the series of C-HPP workshops held during 2014. All data (posters, presentations) used are available at the C-HPP Wiki (<uri xlink:href='http://c-hpp.webhosting.rug.nl/' xlink:type='simple'>http://c-hpp.webhosting.rug.nl/</uri>) and in the Supporting Information.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jprobs/2015/jprobs.2015.14.issue-9/pr5013009/production/images/medium/pr-2014-013009_0005.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/pr5013009'>ACS Electronic Supporting Info</A></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼