RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        ESS equipped DFIG wind farm with coordinated power control under grid fault conditions

        Mazgar, Farshid Najaty,Hagh, Mehrdad Tarafdar,Tohidi, Sajjad The Korean Institute of Power Electronics 2021 JOURNAL OF POWER ELECTRONICS Vol.21 No.1

        A new structure for doubly fed induction generator (DFIG) wind farms with coordinated power control under grid fault conditions are proposed in this paper. The proposed structure uses one grid side converter (GSC) and one energy storage system (ESS) for the entire wind farm unlike conventional structures, which have one GSC for each of the DFIGs. A converter loss decrease and a reliability enhancement are some of the advantages of the proposed wind farm, under normal operating conditions. The proposed wind farm follows the new grid codes to remain connected to the grid. In addition, it supports the network voltage and frequency stability by generating reactive and active power during and after faults. The ESS is coordinated with the wind farm to generate smooth active power under normal operation. This improves the low voltage ride-through capability of the wind farm under-voltage fault conditions and enhances the frequency response of the wind farm under frequency faults. MATLAB/Simulink software was used to simulate the proposed wind farm structure. An experimental setup was also provided to test the operation of the proposed power circuit topology.

      • KCI등재

        Effect of soil overburden pressure on mechanical properties of carbon FRP strips

        Vahid Toufigh,Meysam Pourabbas Bilondi,Farshid Tohidi 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.61 No.5

        Carbon fiber reinforced polymers (CFRPs) have been recently investigated as an alternative material for Geosynthetics to improve soil properties. One of the factors influencing the fiber orientation and mechanical properties of CFRP is the effect of soil overburden pressure. This study investigates the tensile behavior of cast-in-place CFRP. During the curing time of specimens, a wide range of normal stress is applied on specimens sandwiched between the soils. Two different soil types are used to determine the effect of soil grain size on the mechanical properties of CFRP. Specimens are also prepared with different specifications such as curing time and mixing soil in to the epoxy. In this study, tensile tests are conducted to investigate the effect of such parameters on tensile behavior of CFRP. The experimental results indicate that by increasing the normal stress and soil grain size, the ultimate tensile strength and the corresponding strain of CFRP decrease; however, reduction in elastic modulus is not noticeable. It should be noted that, increasing the curing period of epoxy resin and mixing soil in to the epoxy have no significant effect on the tensile properties of CFRP.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼