RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Case Study of the Rapid and Long Runout Landslide at Hong′ao Waste Disposal Site in Shenzhen, China

        Kai Wang,Shaojie Zhang,Fangqiang Wei,Hongjuan Yang 대한토목학회 2020 KSCE JOURNAL OF CIVIL ENGINEERING Vol.24 No.3

        A disastrous landslide occurred at the Hong’ao Waste Disposal Site in Shenzhen, China on December 20, 2015, involving a volume of 2.7 × 106 m3 of municipal solid waste (MSW) that travelled a distance of 700 to 800 m, covering an area of 3.8 × 105 m2 and caused 90 casualties. The geomorphological and geological characteristics of the waste disposal site were carefully examined and the landslide was classified as an extremely rapid flowslide. The major feature of the waste site was the basin-like structure with the bottom composed of low-permeable granite bedrock. Therefore, surface runoff could easily accumulate in the MSW due to the lack of drainage system, resulting in an increasing groundwater level. Laboratory tests, including physical characterization, Consolidation Isotropic Undrained (CIU) test and direct shear test were conducted to characterize the material properties of the MSW. Physical characterization indicated the MSW belongs to sandy silt, CIU tests indicated that static liquefaction was conducive to high-speed sliding. The direct shear test data were used to carry out numerical analysis of slope stability, in which the continuous rise in the groundwater level was taken into account. Numerical simulation showed that the pore water pressure induced by underground water seepage and gradual loading from the upper MSW placement aggravate the failure. Consequently, the main reason of the landslide could be concluded as follows: 1) the perched groundwater level due to a large upstream catchment area and the lack of drainage system; 2) the excess pore water pressure induced by static liquefaction played a significant role in its mobility.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼