RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Synthesis, Characterization and Catalytic Properties of Monometal/SiO2 and Bimetal/SiO2 Hollow Spheres with Mesoporous Structure

        Xinzhi Sun,Fanglin Du 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2017 NANO Vol.12 No.12

        Monometallic M1(M1 = Ni/Cu/Fe/Co) silicates and bimetallic Ni–M2(M2 = Cu/Fe/Co) silicates hollow spheres with mesoporous structure and the controllable morphology have been synthesized successfully via one-step sacrificial template method under hydrothermal conditions. The catalysts were obtained by reducing the corresponding silicates in situ under the hydrogen atmosphere at a certain temperature. All the silicates and the catalysts M1/SiO2 and Ni–M2/SiO2 hollow spheres have been characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) and temperature-programmed reduction (TPR) thoroughly and systematically. The morphology and reaction conditions of bimetallic Ni–M2 silicates hollow spheres depend on the second metal M2, which has been verified by SEM, TEM and XRD. From the results, it can be concluded that bimetallic silicates possess better physical properties in favor of the catalytic activity. Bimetallic Ni–M2/SiO2 hollow spheres had higher catalytic property than the monometallic M1/SiO2 and the conversion of nitrobenzene could reach 100% within 3 h using Ni–Cu/SiO2 and Ni–Fe/SiO2 hollow spheres as catalysts.

      • KCI등재

        Phtotoelectrochemical water oxidation to H2O2 based on N-TiO2 derived from NH2-MIL-125 and in-situ application on degradation dye

        Kunpeng Liu,Nan Wang,Jianhua Li,Fanglin Du,Baorong Hou,Ruiyong Zhang 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.128 No.-

        Electrochemical two-electron water oxidation reaction (2e WOR) to produce H2O2 has been widely concerned. However, four-electron competition reaction causes the large overpotential and low productionrates of 2e WOR, which restrict its’ development and application. Herein, we prepared N-TiO2 derivedfrom NH2-MIL-125 by the hydrothermal combined with calcination method. We found that N-TiO2 asphotoanode exhibited the well properties of photoelectrocatalysis water oxidation, which gave an overpotentialof 630 mV at 1 mA cm2. The overpotentials of N-TiO2 was approximately 130 mV (at1 mA cm2) lower than NH2-MIL-125, and even lower than the previous reported TiO2, which may attributeto the increased oxygen vacancy with the calcination process and N doping. In addition, we investigatedthe degradation performance of the prepared catalysts to degrade methylene blue byphotoelctrocatalysis on-site the preparation of H2O2. It was shown that N-TiO2 performed high degradationefficiency (91%) and excellent stability. The possible mechanism was speculated due to theincreased oxygen vacancy and N doping. This work provides a new idea for photoelectrocatalysis wateroxidation materials and points out a new way for on-site H2O2 production for direct use

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼