RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Flexure mechanics of nonlocal modified gradient nano-beams

        Faghidian S Ali 한국CDE학회 2021 Journal of computational design and engineering Vol.8 No.3

        Two frameworks of the nonlocal integral elasticity and the modified strain gradient theory are consistently merged to conceive the nonlocal modified gradient theory. The established augmented continuum theory is applied to a Timoshenko–Ehrenfest beam model. Nanoscopic effects of the dilatation, the deviatoric stretch, and the symmetric rotation gradients together with the nonlocality are suitably accommodated. The integral convolutions of the constitutive law are restored with the equivalent differential model subject to the nonclassical boundary conditions. Both the elastostatic and elastodynamic flexural responses of the nano-sized beam are rigorously investigated and the well posedness of the nonlocal modified gradient problems on bounded structural domains is confirmed. The analytical solution of the phase velocity of flexural waves and the deflection and the rotation fields of the nano-beam is detected and numerically illustrated. The transverse wave propagation in carbon nanotubes is furthermore reconstructed and validated by the molecular dynamics simulation data. Being accomplished in revealing both the stiffening and softening structural responses at nano-scale, the proposed nonlocal modified gradient theory can be beneficially implemented for nanoscopic examination of the static and dynamic behaviors of stubby nano-sized elastic beams.

      • KCI등재

        Analytical determination of shear correction factor for Timoshenko beam model

        Saeed H. Moghtaderi,S. Ali Faghidian,Hossein M. Shodja 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.29 No.4

        Timoshenko beam model is widely exploited in the literature to examine the mechanical behavior of stubby beam-like components. Timoshenko beam theory is well-known to require the shear correction factor in order to recognize the non-uniform shear distribution at a section. While a variety of shear correction factors are appeared in the literature so far, there is still no consensus on the most appropriate form of the shear correction factor. The Saint-Venant's flexure problem is first revisited in the frame work of the classical theory of elasticity and a highly accurate approximate closed-form solution is presented employing the extended Kantorovich method. The resulted approximate solution for the elasticity field is then employed to introduce two shear correction factors consistent with the Cowper's and energy approaches. The mathematical form of the proposed shear correction factors are then simplified and compared with the results available in the literature over an extended range of Poisson's and aspect ratios. The proposed shear correction factors do not exhibit implausible issue of negative values and do not result in numerical instabilities too. Based on the comprehensive discussion on the shear correction factors, a piecewise definition of shear correction factor is introduced for rectangular cross-sections having excellent agreement with the numerical results in the literature for both shallow and deep cross-sections.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼