RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        The competing roles of extensional viscosity and normal stress differences in complex flows of elastic liquids

        Walters, K.,Tamaddon-Jahromi, H.R.,Webster, M.F.,Tome, M.F.,McKee, S. The Korean Society of Rheology 2009 Korea-Australia rheology journal Vol.21 No.4

        In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences $N_1$ and $N_2$, especially $N_1$, and the extensional viscosity $\eta_E$. In this paper, we shall be mainly interested in 'constant-viscosity' Boger fluids, and, accordingly, we shall limit attention to $N_1$ and $\eta_E$. We shall concentrate on two important flows - axisymmetric contraction flow and "splashing" (particularly that which arises when a liquid drop falls onto the tree surface of the same liquid). Modern numerical techniques are employed to provide the theoretical predictions. It is shown that the two obvious manifestations of viscoelastic rheometrical behaviour can sometimes be opposing influences in determining flow characteristics. Specifically, in an axisymmetric contraction flow, high $\eta_E$ can retard the flow, whereas high $N_1$ can have the opposite effect. In the splashing experiment, high $\eta_E$ can certainly reduce the height of the so-called Worthington jet, thus confirming some early suggestions, but, again, other rheometrical influences can also have a role to play and the overall picture may not be as clear as it was once envisaged.

      • SCOPUSSCIE

        Inverse modelling of CF4 and NF3 emissions in East Asia

        Arnold, Tim,Manning, Alistair J.,Kim, Jooil,Li, Shanlan,Webster, Helen,Thomson, David,,hle, Jens,Weiss, Ray F.,Park, Sunyoung,O&,apos,Doherty, Simon Copernicus GmbH 2018 Atmospheric Chemistry and Physics Vol.18 No.18

        <P>Abstract. Decadal trends in the atmospheric abundances of carbon tetrafluoride (CF4) and nitrogen trifluoride (NF3) have been well characterised and have provided a time series of global total emissions. Information on locations of emissions contributing to the global total, however, is currently poor. We use a unique set of measurements between 2008 and 2015 from the Gosan station, Jeju Island, South Korea (part of the Advanced Global Atmospheric Gases Experiment network), together with an atmospheric transport model, to make spatially disaggregated emission estimates of these gases in East Asia. Due to the poor availability of good prior information for this study, our emission estimates are largely influenced by the atmospheric measurements. Notably, we are able to highlight emission hotspots of NF3 and CF4 in South Korea due to the measurement location. We calculate emissions of CF4 to be quite constant between the years 2008 and 2015 for both China and South Korea, with 2015 emissions calculated at 4.3±2.7 and 0.36±0.11 Gg yr−1, respectively. Emission estimates of NF3 from South Korea could be made with relatively small uncertainty at 0.6±0.07 Gg yr−1 in 2015, which equates to ∼1.6 % of the country's CO2 emissions. We also apply our method to calculate emissions of CHF3 (HFC-23) between 2008 and 2012, for which our results find good agreement with other studies and which helps support our choice in methodology for CF4 and NF3. </P>

      • KCI등재후보

        The competing roles of extensional viscosity and normal stress differences in complex flows of elastic liquids

        K. Walters,H.R. Tamaddon-Jahromi,M.F. Webster,M.F. Tomé,S. McKee 한국유변학회 2009 Korea-Australia rheology journal Vol.21 No.4

        In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences N1 and N2, especially N1, and the extensional viscosity ηE. In this paper, we shall be mainly interested in ‘constant-viscosity’ Boger fluids, and, accordingly, we shall limit attention to N1 and ηE. We shall concentrate on two important flows - axisymmetric contraction flow and “splashing” (particularly that which arises when a liquid drop falls onto the free surface of the same liquid). Modern numerical techniques are employed to provide the theoretical predictions. It is shown that the two obvious manifestations of viscoelastic rheometrical behaviour can sometimes be opposing influences in determining flow characteristics. Specifically, in an axisymmetric contraction flow, high ηE can retard the flow, whereas high N1 can have the opposite effect. In the splashing experiment, high ηE can certainly reduce the height of the so-called Worthington jet, thus confirming some early suggestions, but, again, other rheometrical influences can also have a role to play and the overall picture may not be as clear as it was once envisaged.

      • KCI등재

        Numerical simulation of tube-tooling cable-coating with polymer melts

        A. Al-Muslimawi,H.R. Tamaddon-Jahromi,M.F. Webster 한국유변학회 2013 Korea-Australia rheology journal Vol.25 No.4

        This study investigates the numerical solution of viscous and viscoelastic flows for tube-tooling die-extrusion coating using a hybrid nite element/nite volume discretisation (fe/fv). Such a complex polymer melt extrusion-draw-coating flow displays a dynamic contact line, slip, die-swell and two separate free-surfaces, presenting an inner and outer conduit surface to the melt-coating. The practical interest lies in determining efficient windows for process control over variation in material properties, stressing levels generated and vacuum pressure levels imposed. The impact of shear-thinning is also considered. Extensive reference is made throughout to viscous inelastic counterpart solutions. Attention is paid to the influence and variation in relevant parameters of Weissenberg number (We), solvent-fraction (β) and second normal difference (N2) (ξ parameter for EPTT). The impact of model choice and parameters upon field response is described in situ through, pressure-drops, rates of deformation and stress. Various numerical alternative strategies, their stability and convergence issues are also addressed. The numerical scheme solves the momentum-continuity-surface equations by a semi-implicit time-stepping Taylor-Galerkin/pressure-correction (TGPC) finite element (parent-cell) method, whilst invoking a sub-cell cell-vertex fluctuation distribution finite volume scheme for the constitutive stress equation. The hyperbolic aspects of the constitutive equation are addressed discretely through upwind Fluctuation Distribution techniques, whilst temporal and source terms are consistently accommodated through medium-dual-cell schemes. The dynamic solution of the moving boundary problem may be resolved by either separating the solution process for each free-surface section (decoupling), or coupling both sections and solving simultaneously. Each involves a surface height location method, with dependency on surface nodal velocities and surface element sections; two such schemes are investigated. Dedicated and localised shock-capturing techniques are introduced to handle solution singularities as disclosed by die-swell, slip and moving contact lines.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼