RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Wetting layer and size effects on the nonlinear optical properties of semi oblate and prolate Si0.7Ge0.3/Si quantum dots

        Kria M.,Varsha,Farkous M.,Prasad V.,Dujardin F,Pérez L.M.,Laroze D.,Feddi E. 한국물리학회 2021 Current Applied Physics Vol.25 No.-

        Semi oblate and semi prolate are among the most probable self-organized nanostructures shapes. The optoelectronic properties of such nanostructures are not just manipulated with the height and lateral size but also with the wetting layer element. The practical interest of derivatives of germanium and silicon has a great important role in optoelectronic devices. This study is a contribution to the analysis of linear and nonlinear optical properties of Si0.7Ge0.3/Si. In the framework of the effective mass approximation, we solve numerically the Schr¨odinger equation relative to one particle confined in Si0.7Ge0.3/Si semi prolate and semi oblate quantum dots by using the finite element method and by taking into consideration the effect of the wetting layer. The energy spectrum of the lowest states and the dipolar matrix for the fourth allowed transitions are determined and discussed. We also calculate the detailed optical properties, including absorption coefficients, refractive index changes, second and third harmonic generation as a function of the quantum dot sizes. We found that with the change in the size of prolate and oblate quantum dots, there is a shift in the resonance peaks for the absorption coefficient and refractive index. It is due to the modification in the energy levels with changing size. The study proves a redshift in the second harmonic generation and third harmonic generation coefficients with an increase in the height/radius of the oblate/prolate quantum dot, respectively. We also demonstrated the variation of wavefunction inside the quantum dot with the change in wetting layer thickness.

      • KCI등재

        Optical and magneto optical responses assigned to probable processes of formation of exciton bound to an ionized donor in quantum dot

        E. Feddi,N. Aghoutane,M. El-Yadri,F. Dujardin,A. El Aouami,C.A. Duque 한국물리학회 2018 Current Applied Physics Vol.18 No.4

        The system formed by an electron and a hole coupled by Coulomb interactions with an ionized donor is the least known among the excitonic complexes. This complex is usually described as an exciton bound to an ionized donor. Strictly speaking, the exact mechanism of formation of this complex remains unclear. Two processes of formation giving rise to this system can be imagined. In a first process labeled A, the complex may be regarded as an exciton trapped by an ionized donor while in the second mechanism labeled B, this complex can be derived from the binding of a neutral donor and a hole. From a theoretical point of view both protocols can occur, with different probabilities and different binding energies, and consequently lead to different lines in the optical absorption spectra. In our hypothesis, we assume that the statistical mixture contains the two species coming from different origins and which were formed randomly. In this context of uncertainty and mixing processes, we propose to determine the absorption coefficient in the framework of the two possible hypotheses. In the aim to contribute with a valid description of the absorption spectrum, we report in this paper a full theoretical analysis of the optical and magneto-optical phenomena accompanying the two possible processes of formation, taking into account the dot sizes, the magnetic field strength, and the effect of the dielectric constant of the host material.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼