RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed by response surface methodology

        Afshin Ebrahimi,Gholamreza Bonyadinejad,Mansour Sarafraz,Mohsen Khosravi,Seyed Mahmood Taghavi-Shahri,Roya Nateghi,Sedighe Rastaghi 한국화학공학회 2016 Korean Journal of Chemical Engineering Vol.33 No.1

        The decolorization and degradation of the synthetic aqueous solution of the Acid Orange 10 (AO10) dye on Ti/PbO2 anode were investigated using the response surface methodology based on central composite design with three variables: current density, pH, and supporting electrolyte concentration. The Ti/PbO2 electrode was prepared by the electrochemical deposition method. The optimum conditions for AO10 decolorization in synthetic dye solution were electrolyte concentration of 117.04 mM, pH of 12.05, and current density of 73.64 mA cm−2. The results indicated that the most effective factor for AO10 degradation was current density. Furthermore, the color removal efficiency significantly increased with increasing current density. To measure AO10 mineralization under optimum conditions, the chemical oxygen demand (COD) and total organic carbon (TOC) removal were evaluated. Under these conditions, decolorization was completed and 63% removal was recorded for COD and 60% for TOC after 100 min of electrolysis.

      • KCI등재

        Study of photochemical and sonochemical processes efficiency for degradation of dyes in aqueous solution

        Afshin Maleki,Amir Hossein Mahvi,Roya Ebrahimi,Yahya Zandsalimi 한국화학공학회 2010 Korean Journal of Chemical Engineering Vol.27 No.6

        The degradation of two commercially available dyestuffs (C.I. Reactive Black 5 and C.I. Disperse Orange 25) by ultraviolet radiation (UV), ultrasonic irradiation (US), UV/H2O2 and US/H2O2 processes was investigated in a laboratory-scale batch photoreactor equipped with a 55 W immersed-type low-pressure mercury vapor lamp and a sonoreactor with low frequency (42 kHz) plate type transducer at 170W of acoustic power. The toxicity was also evaluated in acute toxicity studies using Daphnia magna. Results showed that color removal efficiencies by US and US/H2O2processes were negligible for both dyes. Almost complete disappearance of Reactive Black 5 (97.9%) in UV/H2O2 process was possible after 5 min of irradiation. The maximum color removal efficiency of Disperse Orange 25 after 10min of irradiation, however, was only 9.2% and reached a maximum value of 41% after 120 min of irradiation. Pseudofirst order kinetics with respect to dyestuffs concentrations was found to fit all the experimental data. The results clearly showed that both dyes examined were toxic to D. magna and resulted in quite low LC50 values.

      • KCI등재

        Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution

        Roya Ebrahimi,Afshin Maleki,Yahya Zandsalimi,Reza Ghanbari,Behzad Shahmoradi,Reza Rezaee,Mahdi Safari,주상우,Hiua Daraei,Shivaraju Harikaranahalli Puttaiah,Omid Giahi 한국공업화학회 2019 Journal of Industrial and Engineering Chemistry Vol.73 No.-

        The present study aimed at evaluating the application of tungsten oxide-doped zinc oxide nanoparticlesfor the photocatalytic degradation of Direct Blue 15 dye in a sequencing batch reactor. ZnO nanoparticleswere doped with WO3 through hydrothermal synthesis method. To characterize the synthesizednanoparticles scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy,atomic force microscopy, zeta potential analysis, and ultraviolet–visible spectroscopy were used. Theradiation source in this study wasfive 6 W UV lamps. Operational parameters affecting the process,namely pH, light intensity, dopant percentage, dye concentration, and contact time, were evaluated. Theresults of the present study revealed that the efficiency of the photocatalytic process for the degradationof organic dyes was higher at acidic pH values than neutral or basic values. In addition, upon increasingthe light intensity from 172 to 505 W/m2, the efficacy of dye degradation was enhanced from 27.8 to73.5%. Increasing the concentration of the dopant percentage from 1 to 5% w/v increased the degradationefficacy from 30.69 to 73.1%. Increasing the initial dye concentration from 20 to 100 mg/L decreased thedegradation efficacy from 86.9 to 37.5%. Photocatalytic process using WO3-doped ZnO nanoparticlesfixedon a glass surface thus was proven to show a good efficiency for the degradation of organic dye in aquaticsolutions.

      • KCI등재

        Catalytic hydrogenation of disinfection by-product bromate by cobalt and nickle prussian blue analogues with borohydride

        Mao Po-Hsin,박영권,Lin Yi-Feng,Thanh Bui Xuan,Tuan Duong Dinh,Ebrahimi Afshin,Lisak Grzegorz,Tangcharoen Thanit,Lin Kun-Yi Andrew 한국화학공학회 2023 Korean Journal of Chemical Engineering Vol.40 No.12

        As disinfection is employed extensively, disinfection by-product bromate has become an emerging environmental issue due to its carcinogenic toxicity. For developing an effective alternative approach for reducing bromate, cobalt and nickel-based Prussian Blue (PB) analogues are proposed here for incorporating a convenient reducing agent, NaBH4 (i.e., a H2-rich reagent) for reducing bromate to bromide as cobalt and nickel are recognized as effective metals for catalyzing hydrolysis of NaBH4, and PB exhibits versatile catalytic activity. While CoPB and NiPB are comprised of the same crystalline structure, CoPB exhibits slightly higher specific surface area, more reductive surface, and more superior electron transfer than NiPB, enabling CoPB to accelerate bromate reduction. CoPB also exhibits a higher affinity towards NaBH4 than NiPB based on density functional theory calculations. Moreover, CoPB also exhibits a relatively low activation energy (i.e., 59.5 kJ/mol) of bromate reduction than NiPB (i.e., 63.2 kJ/mol). Furthermore, bromate reduction by CoPB and NiPB could be also considerably enhanced under acidic conditions, and CoPB and NiPB could still effectively remove bromate even in the presence of nitrate, sulfate and phosphate. CoPB and NiPB are also validated to be recyclable for reducing bromate, indicating that CoPB and NiPB are promising heterogeneous catalysts for reducing bromate.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼