RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Frequency-based tension assessment of an inclined cable with complex boundary conditions using the PSO algorithm

        Wen-ming Zhang,Zhi-wei Wang,Dan-dian Feng,Zhao Liu 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.79 No.5

        The frequency-based method is the most commonly used method for measuring cable tension. However, the calculation formulas for the conventional frequency-based method are generally based on the ideally hinged or fixed boundary conditions without a comprehensive consideration of the inclination angle, sag-extensibility, and flexural stiffness of cables, leading to a significant error in cable tension identification. This study aimed to propose a frequency-based method of cable tension identification considering the complex boundary conditions at the two ends of cables using the particle swarm optimization (PSO) algorithm. First, the refined stay cable model was established considering the inclination angle, flexural stiffness, and sag-extensibility, as well as the rotational constraint stiffness and lateral support stiffness for the unknown boundaries of cables. The vibration mode equation of the stay cable model was discretized and solved using the finite difference method. Then, a multiparameter identification method based on the PSO algorithm was proposed. This method was able to identify the tension, flexural stiffness, axial stiffness, boundary rotational constraint stiffness, and boundary lateral support stiffness according to the measured multiorder frequencies in a synchronous manner. The feasibility and accuracy of this method were validated through numerical cases. Finally, the proposed approach was applied to the tension identification of the anchor span strands of a suspension bridge (Jindong Bridge) in China. The results of cable tension identification using the proposed method and the existing methods discussed in previous studies were compared with the on-site pressure ring measurement results. The comparison showed that the proposed approach had a high accuracy in cable tension identification. Moreover, the synchronous identification of the flexural stiffness, axial stiffness, boundary rotational constraint stiffness, and boundary lateral support stiffness was highly beneficial in improving the results of cable tension identification.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼