RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Simulation of droplet impact on a solid surface using the level contour reconstruction method

        신승원,Damir Juric 대한기계학회 2009 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.23 No.9

        We simulate the three-dimensional impact of a droplet onto a solid surface using the level contour reconstruction method (LCRM). A Navier-slip dynamic contact line model is implemented in this method and contact angle hysteresis is accounted for by fixing the contact angle limits to prescribed advancing or receding angles. Computation of a distance function directly from the tracked interface enables a straightforward implementation of the contact line dynamic model in the LCRM. More general and sophisticated contact line models are readily applicable in this front tracking approach with few modifications, since complete knowledge of the geometrical information of the interface in the vicinity of the wall contact region is available. Several validation tests are performed including 2D planar droplet, 2D axisymmetric droplet, and full three-dimensional droplet splashing problems. The results show good agreement compared with existing numerical and experimental solutions.

      • SCISCIESCOPUS

        A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques

        Shin, Seungwon,Juric, Damir John Wiley Sons, Ltd. 2009 International journal for numerical methods in flu Vol.60 No.7

        <P>Successful interface methods for multiphase flows need to be designed to operate well in the opposite extremes of strongly surface tension-dominant flows on the one hand and strongly deforming flows on the other. To this end, recent advances in direct numerical simulation of multiphase flows have involved the hybridization of popular methods. One hybrid approach developed by the authors is the level contour reconstruction method (LCRM), which combines the characteristics of both the front tracking and the level set method. It was designed specifically for general 3D multiphase flow problems where very dynamic and deformable interfaces interact and where accuracy, reliability, and simplicity are essential features. In this paper, we carry the hybridization of the LCRM with the level set technique to a further level in that the explicit calculation of a distance function is introduced and plays a crucial role in the interface reconstruction procedure as well as in the calculation of the surface tension force. An accurate method of computing the distance function directly from the tracked interface is presented whereby a vector distance function is found, i.e. the minimum distance to the interface as well as the corresponding minimum distance point location on the interface itself. This information allows us to calculate a compact curvature field for the computation of the surface tension force, which decreases the level of parasitic currents to a negligible level. Various benchmark test cases to demonstrate the accuracy of the new schemes compared with other existing methods are provided. Copyright © 2008 John Wiley & Sons, Ltd.</P>

      • KCI등재

        High Order Level Contour Reconstruction Method

        Seungwon Shin,Damir Juric 대한기계학회 2007 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.21 No.2

        Complex interfacial physics arising from geometric curvature associated with surface tension as well as phase transformation make it a formidable task to design an accurate, reliable, and yet simple method for direct computation of multiphase flows. Hybrid methods mixing conventional, Volume-of-Fluid, Level Set, Phase Field, and Front Tracking methods have recently become popular in an attempt to overcome the shortcomings of each method alone. We developed the Level Contour Reconstruction Method (LCRM) as part of a hybrid method for treating the complex interface geometry associated with general three-dimensional multiphase flows. The main idea in that work focused on a simple and robust algorithm especially suited for dynamic interfaces in the three-dimensional case by combining characteristics of both Front Tracking and Level Set methods. In this article we describe a modification to the LCRM which introduces a high order interpolation kernel during the course of the interface reconstruction along with a new hybrid surface tension formulation. With this we can essentially eliminate any mass redistribution between regions of differing curvature and reconstruct the interface accurately and smoothly. The improvement with high order reconstruction is also noticeable vis a vis spurious currents which are further decreased by two orders of magnitude over the previous linear reconstruction method. Moreover, there is no disturbance concurrent with reconstruction and the solution fidelity is not influenced by the reconstruction time step. This High Order Level Contour Reconstruction Method retains the simplicity of the original LCRM and avoids complicated interface smoothing procedures.

      • A hybrid interface tracking – level set technique for multiphase flow with soluble surfactant

        Shin, Seungwon,Chergui, Jalel,Juric, Damir,Kahouadji, Lyes,Matar, Omar K.,Craster, Richard V. Elsevier 2018 Journal of computational physics Vol.359 No.-

        <P><B>Abstract</B></P> <P>A formulation for soluble surfactant transport in multiphase flows recently presented by Muradoglu and Tryggvason (JCP 274 (2014) 737–757) is adapted to the context of the Level Contour Reconstruction Method, LCRM, (Shin et al. IJNMF 60 (2009) 753–778, ) which is a hybrid method that combines the advantages of the Front-tracking and Level Set methods. Particularly close attention is paid to the formulation and numerical implementation of the surface gradients of surfactant concentration and surface tension. Various benchmark tests are performed to demonstrate the accuracy of different elements of the algorithm. To verify surfactant mass conservation, values for surfactant diffusion along the interface are compared with the exact solution for the problem of uniform expansion of a sphere. The numerical implementation of the discontinuous boundary condition for the source term in the bulk concentration is compared with the approximate solution. Surface tension forces are tested for Marangoni drop translation. Our numerical results for drop deformation in simple shear are compared with experiments and results from previous simulations. All benchmarking tests compare well with existing data thus providing confidence that the adapted LCRM formulation for surfactant advection and diffusion is accurate and effective in three-dimensional multiphase flows with a structured mesh. We also demonstrate that this approach applies easily to massively parallel simulations.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Extension of the LCRM Front-tracking method (Shin et al. IJNMF 60 (2009) 753–778) to flows with surfactant. </LI> <LI> Following Muradoglu and Tryggvason (JCP 274 (2014) 737–757) surfactant transport is solved on the interface and in the bulk. </LI> <LI> Accuracy demonstrated for mass conservation, surface advection and diffusion, bulk transport and Marangoni stresses. </LI> <LI> Large scale parallel calculations of two-phase annular film flow in the counter-current flow regime. </LI> </UL> </P>

      • KCI등재

        Hybridization of front tracking and level set for multiphase flow simulations: a machine learning approach

        Ikroh Yoon,Jalel Chergui,Damir Juric,신승원 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.9

        A machine learning (ML) based approach is proposed to hybridize two wellestablished methods for multiphase flow simulations: the front tracking (FT) and the level set (LS) methods. Based on the geometric information of the Lagrangian marker elements which represents the phase interface in FT simulations, the distance function field, which is the key feature for describing the interface in LS simulations, is predicted using an ML model. The trained ML model is implemented in our conventional numerical framework, and we finally demonstrate that the FT-based interface representation can easily and immediately be switched to an LS-based representation whenever needed during the simulation period.

      • SCIESCOPUS

        Simulation of immiscible liquid–liquid flows in complex microchannel geometries using a front-tracking scheme

        Kahouadji, Lyes,Nowak, Emilia,Kovalchuk, Nina,Chergui, Jalel,Juric, Damir,Shin, Seungwon,Simmons, Mark J. H.,Craster, Richard V.,Matar, Omar K. Springer Berlin Heidelberg 2018 MICROFLUIDICS AND NANOFLUIDICS Vol.22 No.11

        <P>The three-dimensional two-phase flow dynamics inside a microfluidic device of complex geometry is simulated using a parallel, hybrid front-tracking/level-set solver. The numerical framework employed circumvents numerous meshing issues normally associated with constructing complex geometries within typical computational fluid dynamics packages. The device considered in the present work is constructed via a module that defines solid objects by means of a static distance function. The construction combines primitive objects, such as a cylinder, a plane, and a torus, for instance, using simple geometrical operations. The numerical solutions predicted encompass dripping and jetting, and transitions in flow patterns are observed featuring the formation of drops, ‘pancakes’, plugs, and jets, over a wide range of flow rate ratios. We demonstrate the fact that vortex formation accompanies the development of certain flow patterns, and elucidate its role in their underlying mechanisms. Experimental visualisation with a high-speed imaging are also carried out. The numerical predictions are in excellent agreement with the experimental data.</P><P><B>Electronic supplementary material</B></P><P>The online version of this article (doi:10.1007/s10404-018-2149-y) contains supplementary material, which is available to authorized users.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼