RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Multimodal prerehabilitation for elderly patients with sarcopenia in colorectal surgery

        Wu Jingting,Chi Hannah,Kok Shawn,Chua Jason M.W.,Huang Xi-Xiao,Zhang Shipin,Mah Shimin,Foo Li-Xin,Peh Hui-Yee,Lee Hui-Bing,Tay Phoebe,Tong Cherie,Ladlad Jasmine,Tan Cheryl H.M.,Khoo Nathanelle,Aw Dari 대한대장항문학회 2024 Annals of Coloproctolgy Vol.40 No.1

        Sarcopenia, which is characterized by progressive and generalized loss of skeletal muscle mass and strength, has been well described to be associated with numerous poor postoperative outcomes, such as increased perioperative mortality, postoperative sepsis, prolonged length of stay, increased cost of care, decreased functional outcome, and poorer oncological outcomes in cancer surgery. Multimodal prehabilitation, as a concept that involves boosting and optimizing the preoperative condition of a patient prior to the upcoming stressors of a surgical procedure, has the purported benefits of reversing the effects of sarcopenia, shortening hospitalization, improving the rate of return to bowel activity, reducing the costs of hospitalization, and improving quality of life. This review aims to present the current literature surrounding the concept of sarcopenia, its implications pertaining to colorectal cancer and surgery, a summary of studied multimodal prehabilitation interventions, and potential future advances in the management of sarcopenia.

      • Self-powered reduced-dimensionality perovskite photodiodes with controlled crystalline phase and improved stability

        Lim, Ju Won,Wang, Huan,Choi, Chi Hun,Kwon, Hannah,Quan, Li Na,Park, Won-Tae,Noh, Yong-Young,Kim, Dong Ha Elsevier 2019 Nano energy Vol.57 No.-

        <P><B>Abstract</B></P> <P>In this work, we developed the perovskite photodiodes based on the dimensionality-reduced quasi two-dimensional (Q-2D) photoactive layer structure by incorporating phenylethylammonium iodide (PEAI) into methylammonium lead iodide (MAPbI<SUB>3</SUB>), which effectively enhanced both the crystalline phase and the ambient stability of the perovskite. The Q-2D perovskite photodiode exhibited a dark current of 1.76 × 10<SUP>−7</SUP> A/cm<SUP>2</SUP>, resulting in the detectivity (D*) of 2.20 × 10<SUP>12</SUP> J and responsivity of 0.53 A/W, which is among the highest performance levels without the voltage bias (0 V) due to the systematically optimized perovskite phase resulting in the reduced leakage current. In addition, the current density of Q-2D perovskite photodiode maintained 76% of the initial level current density even after 80 days in the ambient condition, compared to 15% of 3D perovskite photodiode control sample. Such superior performance and stability were mainly attributed to the enhanced degree of crystallization of the Q-2D perovskites, which was confirmed by X-ray diffraction and grazing incidence wide-angle X-ray scattering (GIWAXS) measurement. Also, the improved stability of Q-2D perovskite films was confirmed by both lifetime test and atomic force microscopy studies where the negligible number of pinholes was observed in the quasi-2D perovskite films while considerable deformations were found in the 3D perovskites photodiode. Our study suggests a simple and robust protocol for the development of stable and high-performance perovskite photodetectors via dimensional and constitutional optimization of conventional perovskites for the practical usage of perovskite in the photodiode applications.</P> <P><B>Highlights</B></P> <P> <UL> <LI> The Q-2D perovskite photodiode exhibited the D* of 2.20 × 10<SUP>12</SUP> J and R of 0.53 A/W without the voltage bias (0 V). </LI> <LI> The current density of Q-2D perovskite photodiode maintained 76 % of the initial level while 15 % for the 3D one. </LI> <LI> Grazing incidence wide-angle X-ray scattering (GIWAXS) analysis revealed the origin of the stability improvement. </LI> <LI> Quasi-2D perovskite materials can be promising candidates for stable, tunable and flexible optoelectronic applications. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>Dimensionality-controlled perovskite photodiodes with improved stability were systematically fabricated while retaining the comparable electrical performance of conventional three-dimensional perovskites. The quasi-2D perovskite photodetector exhibited an improved detectivity of 2.20 × 10<SUP>12</SUP> J performance and maintained 76% of initial level while the performance of three-dimensional perovskite photodetector remained only 15% after 80 days. Our study suggests a facile solution for the poor stability of the three-dimensional perovskite, with a potential for the development of highly-stable perovskite optoelectronics.</P> <P>[DISPLAY OMISSION]</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼