RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Research on the Carbonation Resistance and Carbonation Depth Prediction Model of Fly Ash- and Slag-Based Geopolymer Concrete

        Chenggong Zhao,Jian Li,Zhenyu Zhu,Qiuyu Guo,Xinrui Wu,Zhiyuan Wang,Renda Zhao 대한토목학회 2024 KSCE Journal of Civil Engineering Vol.28 No.7

        To study the effect of different slag content and different curing methods on the carbonation resistance of fly ash- and slag-based geopolymer concrete (FA&SL-GPC), a series of experiments were carried out with slag content (accounting for 10%, 30% and 50% of cementitious materials) and curing methods (standard curing and high temperature curing) as variables. The results show that increasing the slag content is helpful for improving the carbonation resistance properties, microstructure, and carbonation resistance components of FA&SL-GPC substrate. Adopting a standard curing method and prolonging the curing age are more favorable to the carbonation resistance of FA&SL-GPC, and the longer the curing time is, the better. Finally, the carbonation depth prediction model suitable for this experiment is deduced and verified. From the research results, it can be seen that using a high slag content mix and curing under standard conditions is beneficial for the carbonization resistance of GPC structural components.

      • KCI등재

        Microstructure Change of Nanosilica-Cement Composites Partially Exposed to Sulfate Attack

        Qian Huang,Liang Zhao,Chenggong Zhao,Dongsheng Liu,Chaoqiang Wang 한국콘크리트학회 2020 International Journal of Concrete Structures and M Vol.14 No.3

        The deterioration of cement composites containing nanosilica partially exposed to sulfate attack was studied, and the microstructure change of the composites was analysed by a scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results showed that nanosilica-cement composites had better sulfate resistance compared to plain cement composite under partial exposure to sulfate attack, and their sulfate resistance increased as the nanosilica content increased (in the range of 0 to 5 wt% replacing cement by weight). The main sulfate products were gypsum and ettringite within the surface and inner parts, respectively in both the immersed and evaporation portions of the nanosilica-cement composites, which was consistent with the plain cement composite. Thus, the incorporation of nanosilica did not change the distribution characteristics of the sulfate products within the composites partially exposed to sulfate attack. However, the addition of nanosilica reduced the amount of sulfate products in both the immersed and evaporation portions, and their amount decreased with the increase of nanosilica content. The evaporation portions of the composites suffered chemical sulfate attack rather than sulfate salt crystallization. Nanosilica-cement composites could be applied in real partial exposure environments containing sulfate ions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼