RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effects of Continuous Straw Returning on Soil Functional Microorganisms and Microbial Communities

        Guan Yunpeng,Wu Meikang,Che Songhao,Yuan Shuai,Yang Xue,Li Siyuan,Tian Ping,Wu Lei,Yang Meiying,Wu Zhihai 한국미생물학회 2023 The journal of microbiology Vol.61 No.1

        This study examined the changes in soil enzymatic activity, microbial carbon source metabolic diversity, and straw decomposition rates in paddy fields treated with 1, 2, or 3 years of straw returning (SR1–SR3). The soil’s ability to decompose straw and cellulolytic bacteria increased with the number of treatment years (1: 31.9% vs. 2: 43.9% vs. 3: 51.9%, P < 0.05). The numbers of Azotobacter, Nitrobacteria, cellulolytic bacteria, and inorganic phosphate bacteria increased progressively with the numbers of straw returning years. Cellulolytic bacteria and inorganic phosphate bacteria were significantly positively correlated with the decomposition rate (r = 0.783 and r = 0.375, P < 0.05). Based on 16S sequencing results, straw returning improved the microbial diversity of paddy soils by increasing unclassified bacteria and keeping dominant soil microorganism populations unchanged. The relative importance of individual microbial taxa was compared using random forest models. Proteobacteria, ammoniating bacteria, and potassium dissolving bacteria contributed to peroxidase activity. The significant contributors to phosphate monoesterase were Acidobacteriota, Desulfobacterota, ammoniating bacteria, cellulolytic bacteria, and potassium-dissolving bacteria. Proteobacteria, ammoniating bacteria, cellulolytic bacteria, and potassium-dissolving bacteria contributed to urease activity. Desulfobacterota, ammoniating bacteria, cellulolytic bacteria, and potassium-dissolving bacteria contributed to the neutral invertase activity. In conclusion, soil microbial community structure and function were affected within 2 years of straw returning, which was driven by the combined effects of soil organic carbon, available nitrogen, available potassium, and pH. With elapsing straw returning years, soil properties interacted with soil microbial communities, and a healthier soil micro-ecological environment would form.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼