RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Recent advance of single atom-based photocatalysts for energy conversion and environmental purification

        Niu Yaling,Yue Chengcai,Li Shuqi,Che Guangbo,Su Nan,Dong Hongjun,Li Chunmei 한국탄소학회 2023 Carbon Letters Vol.33 No.4

        Developing the high-performance semiconductor photocatalytic materials is an eternal topic under the background of the current energy and environment requirements. In recent years, single-atom photocatalysts (SAPCs) have been brought a lot of attention in energy conversion and environmental purification because of their unique characteristics and properties, including the unique coordination patterns, outstanding atomic utilization, quantum confinement effects, high catalytic activity, etc. Hence, this critical review focuses on the summarized various synthetic methods and the recent important applications of SAPCs, including photocatalytic H2 evolution (PHE) from water splitting, photocatalytic CO2 reduction, photodegradation of organic pollutants, etc. The prospects and challenges for future research topics of SAPCs with excellent activity and stability for various photocatalytic applications are prospected at the end of this review. We sincerely expect that this critical review can promote deep-level insight into the SAPCs subject for the future significant applications in other fields.

      • KCI등재

        An S-scheme photocatalyst constructed by modifying Ni-doped Sn3O4 micro-flowers on g-C3N4 nanosheets for enhanced visible-light-driven hydrogen evolution

        Dandan Wang,Zhaoxin Lin,Chun Miao,Wei Jiang,Hongji Li,Chunbo Liu,Guangbo Che 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.113 No.-

        Carbon nitrides (g-C3N4) is considered to be the prospective semiconductor photocatalyst for photocatalytic H2 evolution. Nevertheless, it suffers from low charge transfer efficiency and fewer metal active sites. Thereby, Ni-Sn3O4/g-C3N4 photocatalysts were constructed by anchoring Ni-doped Sn3O4 micro-flowers on g-C3N4 via a feasible and straightforward solvothermal treatment. The prepared Ni-Sn3O4/g-C3N4 S-scheme heterojunction could improve the transfer and separation efficiency of photo-generated electron-hole pairs by facilitating the electrons transfer from Ni-Sn3O4 to g-C3N4. Moreover, the photocatalytic H2 production performance was ameliorated due to the established internal electric field and the energy band bending in Ni-Sn3O4/g-C3N4 S-scheme heterojunction. Meanwhile, the doping Ni in Sn3O4 exposed more active sites in Ni-Sn3O4/g-C3N4 heterojunction for producing H2. As a result, Ni-Sn3O4/g-C3N4-5 photocatalyst exhibited outstanding H2 yields of 1961 µmol h−1 g−1 under visible light irradiation in comparison with pure Ni-Sn3O4 (12 µmol h−1 g−1) and bared g-C3N4 (1391 µmol h−1 g−1). Furthermore, the S-scheme mechanism in Ni-Sn3O4/g-C3N4 heterojunction for producing H2 by oxidizing H2O was proposed. This study provides helpful guide for developing efficient g-C3N4-based photocatalytic systems.

      • KCI등재

        Ion-imprinted antifouling nanocomposite membrane for separation of lithium ion

        Dongshu Sun,Tianyu Zhou,Yang Lu,Yongsheng Yan,Chunbo Liu,Guangbo Che 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.9

        Membrane fouling is a primary challenge restricting the practical application of membrane separation technology. Inspired by the idea that improving hydrophilicity would lead to antifouling performance of membrane material. In this work, ion-imprinted antifouling nanocomposite membrane (LiI-NcMs) blended with GO and TiO2 nanomaterialwas fabricated for selective separation of lithium ion. As a result, markedly improved hydrophilicity was achievedon LiI-NcMs (55.1o for contact angle). LiI-NcMs also showed good selective adsorption capacity in the mixed solutionof Mg2+ and Li+. Moreover, LiI-NcMs exhibited superior stability; after 20 adsorption/desorption cycles a maximumadsorption capacity of 88.1% can be maintained. This work demonstrates a new and facile approach to prepare novelmembrane separation material for a particular substance for efficient selective separation in industrial applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼