RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Experimental Study of the Salt Transfer in a Cold Sodium Sulfate Soil

        Xusheng Wan,Fumao Gong,Mengfei Qu,Enxi Qiu,Changmao Zhong 대한토목학회 2019 KSCE JOURNAL OF CIVIL ENGINEERING Vol.23 No.4

        Salt migration and accumulation are the main sources of salt expansion. To study the role of salt transport in soil, laboratory tests were conducted to simulate salt transfer under real conditions. Temperature, water content, salt content and soil displacement of a sodium sulfate soil were measured during the freezing process/freeze-thaw cycles. Meanwhile, Salt concentration was regressed bases on test data to investigate the movement of salt diffusion, in the process, the Pitzer ion model was employed to calculate the freezing point of saline soils to determine the frozen depth. Moreover, the amount of crystallization was estimated by the saturation curve of a sodium sulfate solution and the detected salt content. The results show that salt transfer in soil occurs as a result of numerous physicochemical processes and that the maximum salt transport occurred in the frozen fringe zone in the soil. Salt crystallization increases the effect of salt transfer in the soil unidirectional freezing process. In addition, salt expansion had an accumulative effect, and it increases as the number of freeze-thaw cycles increases. The quantity of salt that is transported increases as the salt content increases.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼