RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Selection of an Optimal Lattice Wind Turbine Tower for a Seismic Region based on the Cost of Energy

        Bora Gencturk,Arezou Attar,Cenk Tort 대한토목학회 2015 KSCE JOURNAL OF CIVIL ENGINEERING Vol.19 No.7

        Over the past few decades, wind has emerged as one of the major sources of green and renewable energy for being a cost effective solution and offering a substantial reduction in greenhouse gas emissions. Currently, onshore wind energy is undergoing a rapid development and expansion at an annual rate of approximately 27%. As such, more and more wind farms are being established in earthquake prone areas resulting from the availability of wind energy in these regions. This paper investigates the optimal selection of lattice wind turbine towers in seismic regions based on the Cost of Energy (COE). Although, various different tower types and materials (e.g., steel and concrete-steel composite monopole) are available, this study focuses on steel lattice towers for providing a cost effective solution and for posing a challenging structural optimization problem. To the knowledge of the authors, design optimization of lattice wind turbine towers subjected to combined earthquake, wind and gravity loading has not been performed before. Ten tower height-wind turbine size combinations are generated by placing turbines with 100 to 400 kW power generation capacity on towers having 24 to 42.6 m height, and a cost optimal solution is obtained for each combination. Taboo search algorithm is used to minimize the total cost. The wind and earthquake loads on the towers are obtained for a specific case study location. The COE for each combination is calculated using three different wind probability distributions. Instead of using simplified structural models, all the details of a rigorous structural analysis, e.g., geometric nonlinearity, are included in the finite element models. Realistic loading conditions, including wind and earthquake, are considered.

      • KCI등재

        Nonlinear Fiber Modeling of Steel-Concrete Partially Composite Beams with Channel Connectors

        Alper Ozturk,Eray Baran,Cenk Tort 대한토목학회 2019 KSCE Journal of Civil Engineering Vol.23 No.5

        A simplified nonlinear fiber-based finite element model of steel-concrete partially composite beams utilizing channel type mechanical shear connectors is developed in OpenSees framework. The interaction between steel beam and concrete slab is accounted for by introducing nonlinear zero length elements and rigid links. The channel shear connector response used in numerical models is based on the previously obtained experimental response from pushout tests. Accuracy of the numerical models in predicting the response of beams is verified with the results of the previously conducted composite beam tests. The numerically predicted response agrees well with the experimental results over the entire range of load-deflection curves for both the fully composite and partially composite beams. The numerical models are also able to accurately predict the interface slip between steel beam and concrete slab when compared to the experimentally determined slip values, as well as the closed form slip predictions. Analysis results allowed the investigation of how the influence of steel and concrete damage is reflected on the overall loaddeflection response of composite beams.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼