RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway

        Gong, Kai,Qu, Bo,Wang, Cairu,Zhou, Jingsong,Liao, Dongfa,Zheng, Wei,Pan, Xianming Korean Society for Molecular and Cellular Biology 2017 Molecules and cells Vol.40 No.6

        Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by lack of insulin and high glucose levels. T2DM can cause bone loss and fracture, thus leading to diabetic osteoporosis. Promoting osteogenic differentiation of osteoblasts may effectively treat diabetic osteoporosis. We previously reported that Sirtuin 1 (Sirt1), a $NAD^+$-dependent deacetylase, promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. We also found that miR-132 regulates osteogenic differentiation by downregulating Sirt1 in a $PPAR{\beta}/{\delta}$-dependent manner. The ligand-activated transcription factor, $PPAR{\alpha}$, is another isotype of the peroxisome proliferator-activated receptor family that helps maintain bone homeostasis and promot bone formation. Whether the regulatory role of $PPAR{\alpha}$ in osteogenic differentiation is mediated via Sirt1 remains unclear. In the present study, we aimed to determine this role and the underlying mechanism by using high glucose (HG) and free fatty acids (FFA) to mimic T2DM in MC3T3-E1 cells. The results showed that HG-FFA significantly inhibited expression of $PPAR{\alpha}$, Sirt1 and osteogenic differentiation, but these effects were markedly reversed by $PPAR{\alpha}$ overexpression. Moreover, siSirt1 attenuated the positive effects of $PPAR{\alpha}$ on osteogenic differentiation, suggesting that $PPAR{\alpha}$ promotes osteogenic differentiation in a Sirt1-dependent manner. Luciferase activity assay confirmed interactions between $PPAR{\alpha}$ and Sirt1. These findings indicate that $PPAR{\alpha}$ promotes osteogenic differentiation via the Sirt1-dependent signaling pathway.

      • KCI등재

        Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway

        Kai Gong,Bo Qu,Cairu Wang,Jingsong Zhou,Dongfa Liao,Wei Zheng,Xianming Pan 한국분자세포생물학회 2017 Molecules and cells Vol.40 No.6

        Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by lack of insulin and high glucose levels. T2DM can cause bone loss and fracture, thus leading to diabetic osteoporosis. Promoting osteogenic differentiation of osteoblasts may effectively treat diabetic osteoporosis. We previously reported that Sirtuin 1 (Sirt1), a NAD+-dependent deacetylase, promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor (PPAR) γ. We also found that miR-132 regulates osteogenic differentiation by downregulating Sirt1 in a PPAR /δ-dependent manner. The ligand-activated transcription factor, PPAR , is another isotype of the peroxisome proliferator-activated receptor family that helps maintain bone homeostasis and promot bone formation. Whether the regulatory role of PPAR in osteogenic differentiation is mediated via Sirt1 remains unclear. In the present study, we aimed to de-termine this role and the underlying mechanism by using high glucose (HG) and free fatty acids (FFA) to mimic T2DM in MC3T3-E1 cells. The results showed that HG-FFA significantly inhibited expression of PPAR , Sirt1 and osteogenic differentiation, but these effects were markedly reversed by PPAR overexpression. Moreover, siSirt1 attenuated the positive effects of PPAR on osteogenic differentiation, suggesting that PPAR promotes osteogenic differentiation in a Sirt1-dependent manner. Luciferase activity assay confirmed interactions between PPAR and Sirt1. These findings indicate that PPAR promotes osteogenic differentiation via the Sirt1-dependent signaling pathway.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼