RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Analysis and Detection of Transmission Lines Based on Twin Reality

        Dong Yang,Bolin Du,Yan Lu,Suxin Zhang,Chengjun Xu,Jian Zhang 한국멀티미디어학회 2023 The journal of multimedia information system Vol.10 No.1

        Now life has been transformed and upgraded to the direction of intelligence, digitalization and informatization along with the advancement of scientific and technological information. The traditional detection of transmission lines is completed by the professional maintenance per-sonnel of the power grid through manual detection of lines. This method is inefficient and has a certain threat to the life safety of detection personnel. The development of deep learning and computational vision supplies a fresh idea for detection of transmission lines. Therefore, this paper analyzes the traditional Faster R-CNN based on twin reality scene modeling technology. Then aiming at the shortcomings of traditional algorithms, the Cascade R-CNN algorithm is proposed to complete the detection of transmission lines based on twin reality system. It com-pares the accuracy and other indicators of Cascade R-CNN and Faster R-CNN algorithms. The effectiveness of two algorithms for analysis and detection of transmission lines is verified through experiments. Finally, the results indicates that the system using Cascade R-CNN has higher prediction accuracy, and has better practicability for analysis and detection of transmission lines.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼