RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Numerical study of ship motions and added resistance in regular incident waves of KVLCC2 model

        Yavuz Hakan Ozdemir,Baris Barlas 대한조선학회 2017 International Journal of Naval Architecture and Oc Vol.9 No.2

        In this study, the numerical investigation of ship motions and added resistance at constant forward velocity of KVLCC2 model is presented. Finite volume CFD code is used to calculate three dimensional, incompressible, unsteady RANS equations. Numerical computations show that reliable numerical results can be obtained in head waves. In the numerical analyses, body attached mesh method is used to simulate the ship motions. Free surface is simulated by using VOF method. The relationship between the turbulence viscosity and the velocities are obtained through the standard k ε turbulence model. The numerical results are examined in terms of ship resistance, ship motions and added resistance. The validation studies are carried out by comparing the present results obtained for the KVLCC2 hull from the literature. It is shown that, ship resistance, pitch and heave motions in regular head waves can be estimated accurately, although, added resistance can be predicted with some error.

      • KCI등재

        An experimental investigation of interceptors for a high speed hull

        Ahmet Gultekin Avci,Baris Barlas 대한조선학회 2019 International Journal of Naval Architecture and Oc Vol.11 No.1

        Nowadays interceptors have been widely used in a vast range of high-speed crafts. In this study, the results of interceptor adeptness experiments made in Istanbul Technical University's Towing Tank are unveiled. The model was tested through three transverse locations of interceptors with six different deployment depths. For three locations, the interceptor was positioned transverse on the aft; close to chine, in the middle and close to the keel. The fourth interceptor was a full length of 13.00% LWL. The results show a significant drag reduction in benefits of 1.50%e11.30% for Fn 0.58e1.19 and the trim reduction was observed in between 1.60 and 4.70. Besides, one of the most significant conclusions indicates that the effect of the interceptor decreases from keel to chine for the same blade deployment heights so the blades should be controlled separately at least in three parts from keel to chine area, if operable.

      • SCIESCOPUSKCI등재

        An experimental investigation of interceptors for a high speed hull

        Avci, Ahmet Gultekin,Barlas, Baris The Society of Naval Architects of Korea 2019 International Journal of Naval Architecture and Oc Vol.11 No.1

        Nowadays interceptors have been widely used in a vast range of high-speed crafts. In this study, the results of interceptor adeptness experiments made in Istanbul Technical University's Towing Tank are unveiled. The model was tested through three transverse locations of interceptors with six different deployment depths. For three locations, the interceptor was positioned transverse on the aft; close to chine, in the middle and close to the keel. The fourth interceptor was a full length of 13.00% LWL. The results show a significant drag reduction in benefits of 1.50%-11.30% for Fn 0.58-1.19 and the trim reduction was observed in between 1.60 and $4.70^{\circ}$. Besides, one of the most significant conclusions indicates that the effect of the interceptor decreases from keel to chine for the same blade deployment heights so the blades should be controlled separately at least in three parts from keel to chine area, if operable.

      • SCIESCOPUSKCI등재

        Numerical study of ship motions and added resistance in regular incident waves of KVLCC2 model

        Ozdemir, Yavuz Hakan,Barlas, Baris The Society of Naval Architects of Korea 2017 International Journal of Naval Architecture and Oc Vol.9 No.2

        In this study, the numerical investigation of ship motions and added resistance at constant forward velocity of KVLCC2 model is presented. Finite volume CFD code is used to calculate three dimensional, incompressible, unsteady RANS equations. Numerical computations show that reliable numerical results can be obtained in head waves. In the numerical analyses, body attached mesh method is used to simulate the ship motions. Free surface is simulated by using VOF method. The relationship between the turbulence viscosity and the velocities are obtained through the standard ${\kappa}-{\varepsilon}$ turbulence model. The numerical results are examined in terms of ship resistance, ship motions and added resistance. The validation studies are carried out by comparing the present results obtained for the KVLCC2 hull from the literature. It is shown that, ship resistance, pitch and heave motions in regular head waves can be estimated accurately, although, added resistance can be predicted with some error.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼