RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Designing on-chip networks for throughput accelerators

        Bakhoda, Ali,Kim, John,Aamodt, Tor M. Association for Computing Machinery 2013 ACM transactions on architecture and code optimiza Vol.10 No.3

        <P>As the number of cores and threads in throughput accelerators such as Graphics Processing Units (GPU) increases, so does the importance of on-chip interconnection network design. This article explores throughput-effective Network-on-Chips (NoC) for future compute accelerators that employ Bulk-Synchronous Parallel (BSP) programming models such as CUDA and OpenCL. A hardware optimization is 'throughput effective' if it improves parallel application-level performance per unit chip area. We evaluate performance of future looking workloads using detailed closed-loop simulations modeling compute nodes, NoC, and the DRAM memory system. We start from a mesh design with bisection bandwidth balanced to off-chip demand. Accelerator workloads tend to demand high off-chip memory bandwidth which results in a many-to-few traffic pattern when coupled with expected technology constraints of slow growth in pins-per-chip. Leveraging these observations we reduce NoC area by proposing a 'checkerboard' NoC which alternates between conventional full routers and half routers with limited connectivity. Next, we show that increasing network terminal bandwidth at the nodes connected to DRAM controllers alleviates a significant fraction of the remaining imbalance resulting from the many-to-few traffic pattern. Furthermore, we propose a 'double checkerboard inverted' NoC organization which takes advantage of channel slicing to reduce area while maintaining the performance improvements of the aforementioned techniques. This organization also has a simpler routing mechanism and improves average application throughput per unit area by 24.3%.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼