RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of electrochemical reduction on the structural and electrical properties of anodic TiO2 nanotubes

        Muhammad Asim Rasheed,Kamran Ahmad,Nilem Khaliq,Yaqoob Khan,Muhammad Aftab Rafiq,Abdul Waheed,Attaullah Shah,Arshad Mahmood,Ghafar Ali 한국물리학회 2018 Current Applied Physics Vol.18 No.3

        The effect of electrochemical reduction on the structural and electrical properties of amorphous as well as annealed TiO2 nanotubes (TNTs) is investigated under ambient conditions. TNTs were prepared by anodizing titanium sheet in ethylene glycol electrolyte containing NH4F and de-ionized water at 40 V for 6 h. Electrochemical reduction is carried out in 1 M aqueous KOH solution for ~15 s at 3 V. TNTs are characterized by SEM, XRD, XPS and impedance spectrometer. XRD results confirm an increase in dspacing for (101) and (200) planes, after electrochemical reduction. XPS data reveal that electrochemical reduction produced prominent shifts of ~0.7e1.0 eV in the binding energies of TNTs. Interestingly, these shifts recover completely (in case of amorphous TNTs) and partially (in case of anatase TNTs) within ~7 days after reduction process due to oxygen uptake. Partial recovery in the binding energies of anatase TNTs is due to the fact that the oxygen vacancies are thermodynamically more stable as compared to amorphous TNTs. Similarly, the electrochemical reduction process decreases the impedance values of TNTs by more than three orders of magnitudes (from MU to kU). The impedance values also recover to the similar values before reduction in a span of ~7days.

      • KCI등재

        Next Generation Flexible Antennas for Radio Frequency Applications

        Aamir Razaq,Asim Ali Khan,Unsa Shakir,Asim Arshad 한국전기전자재료학회 2018 Transactions on Electrical and Electronic Material Vol.19 No.5

        In the era of modern disposable electronic technology, fl exible substrate materials are excessive in demand due to foldable,bendable and stretchable choices. This paper reviews the research undertaken on fl exible substrates particularly employed inhigh-tech applications of radio frequency and antenna design technologies. Irrespective of traditional applications, naturalfi brils based substrates are considered most promising candidates as substrates for next-generation electronic applicationsdue to abundant, low profi le, light-weight, fl exible and environment safe characteristics. This paper also presents a comprehensivestudy of the design and methods that have been applied to use mentioned materials in radio frequency applications. Several challenges are highlighted in the large-scale production and deployment of these technologies in real-world systems.

      • KCI등재

        Effect of pyrolysis temperature on the physiochemical properties of biochars produced from raw and fermented rice husks

        Hafiza Sana,Riaz Asim,Arshad Zubaria,Zahra Syeda Tahsin,Akhtar Javaid,Kanwal Sumaira,Zeb Hassan,Kim Jaehoon 한국화학공학회 2023 Korean Journal of Chemical Engineering Vol.40 No.8

        This study investigated the slow pyrolysis behavior of raw rice husk (RRH) and fermented rice husk (FRH) in a fixed-bed reactor at temperatures in the range of 200–600 °C. The effects of pyrolysis temperature on the biochar yield, composition, and physiochemical properties were examined to evaluate the energy potential of biochars produced from RRH and FRH. The FRH-derived biochar produced at 600 °C was found to be more suitable than the RRH-derived biochar because of its higher carbon content (68.9% vs 42.1%), GCV (31.6 vs 24.1 MJ kg−1), and true density (1.94 vs 1.54 g cm −3). The slow pyrolysis in the high-temperature regime facilitated the formation of lignin-rich and aromatically condensed biochar, making it particularly useful for producing carbon-rich materials. Thus, slow pyrolysis can be a technically viable approach for producing high-energy-density solid fuels that can replace medium-ranking coals in co-firing.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼