RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Shock wave attenuation using sandwiched structures made up of polymer foams and shear thickening fluid

        Kehar Singh,Rajat Raj,Arun Kumar Rajagopal,Sachin Jalwal,Subrata Chakraborty 대한기계학회 2023 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.37 No.3

        The present study experimentally investigates the shock wave attenuation performance of various sandwiched structures made up of different polymer foams (expanded polystyrene and polyurethane foam) with and without shear thickening fluid (STF). STF is a non-Newtonian fluid whose viscosity increases with increase in shear rate due to the formation of hydro clusters produced by the increased hydrodynamic forces acting between the interstitial spaces. Two layers of polymer foams have been considered for the shock protective material and the space between the layers is filled with shear thickening fluid. The shock wave is experimentally generated from a shock tube facility and is allowed to impinge on a target plate kept at 10 mm downstream to the shock tube end. It is seen that the protective material with polyurethane foam and shear thickening fluid (polyethylene glycol+silica nanoparticles) reduces the shock overpressure by nearly 35.51 %, whereas the protective material with only polyurethane foam (with the same thickness) reduces the shock overpressure by only 13.17 %. Similarly, the protective material with expanded polystyrene and shear thickening fluid reduces the shock overpressure by nearly 32.16 %, whereas the protective material with only expanded polystyrene (with the same thickness) reduces the shock overpressure by only 10.49 %. Hence, it is evident that the shear thickening fluid between the polymer foam layers greatly helps in shock wave attenuation.

      • KCI등재

        Variability of Sensible Heat Flux over the Bay of Bengal and its Connection to Indian Ocean Dipole Events

        Ajitha Cyriac,Tarumay Ghoshal,Patel Ramkrushnbhai Shaileshbhai,Arun Chakraborty 한국해양과학기술원 2016 Ocean science journal Vol.51 No.1

        The Bay of Bengal (BOB) is known to possess complex thermodynamics which show distinct seasonal patterns. Surface heat fluxes in the BOB are very much dependant on upper ocean heat exchanges and wind. Sensible heat flux (SHF) is also one among those fluxes that depends on air-sea temperature difference and wind. However, this study further proves that a strong relationship exists between barrier layer thickness (BLT) and SHF variability that has not been focussed on in earlier literatures. This study also investigates the seasonal as well as inter-annual variability of SHF and its relationship with BLT and sea surface temperature (SST) patterns in more detail with statistical analyses. It is found that both SST and BLT are responsible for the evolution of SHF signal in the BOB although their effects are spatially distributed. During the post monsoon period, freshwater induced enhanced BLT is more related to SHF than the summer time when effect of SST is found to be dominant. During Indian Ocean Dipole (IOD) years, the correlation between SHF and BLT in the eastern BOB is more pronounced compared to SHF and SST. The western BOB however is dominated by SST variations for the respective IOD phase which also contribute to SHF signals there. Northernmost BOB shows high standard deviation due to river discharge effects.

      • KCI등재

        A Comparative Analysis of the Bay of Bengal Ocean State Using Standalone and Coupled Numerical Models

        T. S Anandh,Bijan Kumar Das,J. Kuttippurath,Arun Chakraborty 한국기상학회 2021 Asia-Pacific Journal of Atmospheric Sciences Vol.57 No.2

        This study evaluates the impact of coupled model in simulating the ocean state conditions of Bay of Bengal by comparing standalone and coupled numerical model simulations. The oceanic model is the Regional Ocean Modelling System (ROMS) and the coupled model comprises of ROMS and Weather Research and Forecast modelling system to simulate the oceanic and atmospheric state of the bay. The coupled model is initialized with atmospheric data from Global Data Assimilation System and oceanic data from Estimating the Circulation and Climate of the Ocean (ECCO). The standalone model is initiated with ECCO data and forced by European Centre for Medium RangeWeather Forecasts. The simulations are set with a resolution of 12 km in the ocean and 15 km in the atmosphere for the period 2008–2014, and are compared to reanalysis and measurements. The models are compared for their ability to simulate the sea surface temperature, sea surface salinity, sea level, heat flux, sea level pressure and currents in BOB. With the exchange of atmospheric fluxes and sea surface temperature, the coupled model better captured ocean state representations than the standalone model and, matches well with that of the observations. The simulated temperature shows a warm bias in both simulations at 100–150 m depth. The models are able to simulate the seasonal reversal of boundary currents and associated eddies, and variations in heat fluxes over the ocean. The coupled model provides a better simulation of the ocean state and air–sea interaction which can further be used for climate studies over the bay.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼