RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Structural basis for salt-dependent folding of ribonuclease H1 from halophilic archaeon Halobacterium sp. NRC-1

        You, D.J.,Jongruja, N.,Tannous, E.,Angkawidjaja, C.,Koga, Y.,Kanaya, S. Academic Press 2014 Journal of structural biology Vol.187 No.2

        RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNase H1) requires ≥2M NaCl, ≥10mM MnCl<SUB>2</SUB>, or ≥300mM MgCl<SUB>2</SUB> for folding. To understand the structural basis for this salt-dependent folding of Halo-RNase H1, the crystal structure of Halo-RNase H1was determined in the presence of 10mM MnCl<SUB>2</SUB>. The structure of Halo-RNase H1 highly resembles those of metagenome-derived LC11-RNase H1 and Sulfolobus tokodaii RNase H1 (Sto-RNase H1), except that it contains two Mn<SUP>2+</SUP> ions at the active site and has three bi-aspartate sites on its surface. To examine whether negative charge repulsion at these sites are responsible for low-salt denaturation of Halo-RNase H1, a series of the mutant proteins of Halo-RNase H1 at these sites were constructed. The far-UV CD spectra of these mutant proteins measured in the presence of various concentrations of NaCl suggest that these mutant proteins exist in an equilibrium between a partially folded state and a folded state. However, the fraction of the protein in a folded state is nearly 0% for the active site mutant, 40% for the bi-aspartate site mutant, and 70% for the mutant at both sites in the absence of salt. The active site mutant requires relatively low concentration (~0.5M) of salt for folding. These results suggest that suppression of negative charge repulsion at both active and bi-aspartate sites by salt is necessary to yield a folded protein.

      • SCISCIESCOPUS

        Rational design of a glycosynthase by the crystal structure of β-galactosidase from Bacillus circulans (BgaC) and its use for the synthesis of N-acetyllactosamine type 1 glycan structures

        Henze, M.,You, D.J.,Kamerke, C.,Hoffmann, N.,Angkawidjaja, C.,Ernst, S.,Pietruszka, J.,Kanaya, S.,Elling, L. Elsevier Science Publishers 2014 Journal of biotechnology Vol.191 No.-

        The crystal structure of β-galactosidase from Bacillus circulans (BgaC) was determined at 1.8A resolution. The overall structure of BgaC consists of three distinct domains, which are the catalytic domain with a TIM-barrel structure and two all-β domains (ABDs). The main-chain fold and steric configurations of the acidic and aromatic residues at the active site were very similar to those of Streptococcus pneumoniae β(1,3)-galactosidase BgaC in complex with galactose. The structure of BgaC was used for the rational design of a glycosynthase. BgaC belongs to the glycoside hydrolase family 35. The essential nucleophilic amino acid residue has been identified as glutamic acid at position 233 by site-directed mutagenesis. Construction of the active site mutant BgaC-Glu233Gly gave rise to a galactosynthase transferring the sugar moiety from α-d-galactopyranosyl fluoride (αGalF) to different β-linked N-acetylglucosamine acceptor substrates in good yield (40-90%) with a remarkably stable product formation. Enzymatic syntheses with BgaC-Glu233Gly afforded the stereo- and regioselective synthesis of β1-3-linked key galactosides like galacto-N-biose or lacto-N-biose.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼