RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams

        Mehran Shariat,Mahdi Shariati,Amirhossein Madadi,Karzan Wakil 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.29 No.2

        This study conducts an optimization and sensitivity analysis on rectangular reinforced concrete (RC) beam using Lagrangian Multiplier Method (LMM) as programming optimization computer soft ware. The analysis is conducted to obtain the minimum design cost for both singly and doubly RC beams according to the specifications of three regulations of American concrete institute (ACI), British regulation (BS), and Iranian concrete regulation (ICS). Moreover, a sensitivity analysis on cost is performed with respect to the effective parameters such as length, width, and depth of beam, and area of reinforcement. Accordingly, various curves are developed to be feasibly utilized in design of RC beams. Numerical examples are also represented to better illustrate the design steps. The results indicate that instead of complex optimization relationships, the LMM can be used to minimize the cost of singly and doubly reinforced beams with different boundary conditions. The results of the sensitivity analysis on LMM indicate that each regulation can provide the most optimal values at specific situations. Therefore, using the graphs proposed for different design conditions can effectively help the designer (without necessity of primary optimization knowledge) choose the best regulation and values of design parameters.

      • Effect of perlite powder on properties of structural lightweight concrete with perlite aggregate

        Gongxing Yan,Mohammed Zuhear Al-Mulali,Amirhossein Madadi,Ibrahim Albaijan,H. Elhosiny Ali,H. Algarni,Binh Nguyen Le,Hamid Assilzadeh 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.84 No.3

        A high-performance reactive powder concrete (RPC) has been readied alongside river sand, with 1.25 mm particle size when under the condition of 80C steam curing. As a heat and sound insulation, expanded perlite aggregate (EPA) provides economic advantages in building. Concrete containing EPA is examined in terms of cement types (CEM II 32.5R and CEM I 42.5R), doses (0, 2%, 4% and 6%) as well as replacement rates in this research study. The compressive and density of concrete were used in the testing. At the end of the 28-day period, destructive and nondestructive tests were performed on cube specimens of 150 mm150 mm150 mm. The concrete density is not decreased with the addition of more perlite (from 45 to 60 percent), since the enlarged perlite has a very low barrier to crushing. To get a homogenous and fluid concrete mix, longer mixing times for all the mix components are necessary due to the higher amount of perlite. As a result, it is not suggested to use greater volumes of this aggregate in RPC. In the presence of de-icing salt, the lightweight RPC exhibits excellent freeze-thaw resistance (mass is less than 0.2 kg/m2). The addition of perlite strengthens the aggregate-matrix contact, but there is no apparent ITZ. An increased compressive strength was seen in concretes containing expanded perlite powder and steel fibers with good performance.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼