RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Improved 1,3-Propanediol Synthesis from Glycerol by the Robust Lactobacillus reuteri Strain DSM 20016

        Ricci, Maria Antonietta,Russo, Annamaria,Pisano, Isabella,Palmieri, Luigi,de Angelis, Maria,Agrimi, Gennaro The Korean Society for Microbiology and Biotechnol 2015 Journal of microbiology and biotechnology Vol.25 No.6

        Various Lactobacillus reuteri strains were screened for the ability to convert glycerol to 1,3-propanediol (1,3-PDO) in a glycerol-glucose co-fermentation. Only L. reuteri DSM 20016, a well-known probiotic, was able to efficiently carry out this bioconversion. Several process strategies were employed to improve this process. Co<sup>2+</sup> addition to the fermentation medium, led to a high product titer (46 g/l) of 1,3-PDO and to improved biomass synthesis. L. reuteri DSM 20016 produced also ca. 3 µg/g of cell dry weight of vitamin B<sub>12</sub>, conferring an economic value to the biomass produced in the process. Incidentally, we found that L. reuteri displays the highest resistance to Co<sup>2+</sup> ions ever reported for a microorganism. Two waste materials (crude glycerol from biodiesel industry and spruce hydrolysate from paper industry) alone or in combination were used as feedstocks for the production of 1,3-PDO by L. reuteri DSM 20016. Crude glycerol was efficiently converted into 1,3-PDO although with a lower titer than pure glycerol (33.3 vs. 40.7 g/l). Compared with the fermentation carried out with pure substrates, the 1,3-PDO produced was significantly lower (40.7 vs. 24.2 g/l) using cellulosic hydrolysate and crude glycerol, but strong increases of the maximal biomass produced (2.9 vs 4.3 g/l CDW) and of the glucose consumption rate were found. The results of this study lay the foundation for further investigations to exploit the biotechnological potential of L. reuteri DSM 20016 to produce 1,3-PDO and vitamin B<sub>12</sub> using industry byproducts.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼