http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
How does a predator find its prey? Nesidiocoris tenuis is able to detect Tuta absoluta by HIPVs
Abdollahipour Mousa,Fathipour Yaghoub,Mollahosseini Afsaneh 한국응용곤충학회 2020 Journal of Asia-Pacific Entomology Vol.23 No.4
The Zoophytophagous predator, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) is one of the most important candidates for controlling Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato crops. This predator uses different signals including morphological plant traits, prey insects, and volatile substances produced by the infested plants and prey signals to find its suitable prey. These signals are different in each cultivar of a plant. We aimed to understand how N. tenuis finds its prey using volatiles from tomato plants damaged or infested with T. absoluta. The predator’s responses to various plant treatments on two cultivars of tomato plants were tested in a flight tunnel and a four-choice olfactometer. The volatile compounds released from the treatments were also collected and identified. The results of the olfactory experiments showed that the predators even in the absence of light chose the plants bearing their insect prey. This behavior was not the same in both cultivars, and N. tenuis had a tendency toward mechanically damaged of Early Urbana Y cultivar more than Cal JN3 cultivar. The differences in the amount of monoterpenes, sesquiterpenes, and eugenol between cultivars may play a role in the differential attraction of N. tenuis towards infested plants. The difference in the volatile compounds was evident in two cultivars, and this was consistent with our bioassay results. Therefore, the choice of appropriate cultivar and use of herbivore-infested plant volatiles are important for developing a control strategy against T. absoluta and attract its predators.
Polypyrrole-polyaniline/Fe3O4 magnetic nanocomposite for the removal of Pb(II) from aqueous solution
Seyed Abolfazl Seyed Sadjadi,Amirhossein Afshar,Afsaneh Mollahosseini,Mohammadreza Eskandarian 한국화학공학회 2016 Korean Journal of Chemical Engineering Vol.33 No.2
Lead ion which is engaged in aqueous solution has been successfully removed. A novel technique was utilized for the separation and absorption of Pb(II) ions from aqueous solution. Magnetic Fe3O4 coated with newly investigated polypyrrole-polyaniline nanocomposite was used for the removal of extremely noxious Pb(II). Characteristic of the prepared magnetic nanocomposite was done using X-ray diffraction pattern, Field emission scanning electron microscopy (FE-SEM), Fourier transform-infra red spectroscopy (FT-IR) and energy dispersive x-ray spectroscopy (EDX). Up to 100% adsorption was found with 20mg/L Pb(II) aqueous solution in the range of pH=8-10. Adsorption results illustrated that Pb(II) removal efficiency by the nanocomposite increased with an enhance in pH. Adsorption kinetics was best expressed by the pseudo-second-order rate form. Isotherm data fitted well to the Freundlich isotherm model. Upon using HCl and HNO3, 75% PPy-PAn/Fe3O4 nanocomposite, desorption experiment showed that regenerated adsorbent can be reused successfully for two successive adsorption-desorption cycles without appreciable loss of its original capacity.