RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        금속 배관의 연성된 음향 전파 특성

        김호욱(Ho-Wuk Kim),김민수(Min-Soo Kim),이상권(Sang-Kwon Lee) 대한기계학회 2008 大韓機械學會論文集A Vol.32 No.3

        The circular cylinder pipes are used in the many industrial areas. In this paper, the acoustic wave propagation in the pipe containing a gas is researched. First of all, the theory for the coupled acoustic wave propagation in a pipe is investigated. Acoustic wave propagation in pipe can not be occurred independently between the wave of the fluid and the shell. It requires complicated analysis. However, as a special case, the coupled wave in a high density pipe containing a light density medium is corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-walled duct fluid waves. The coincidence frequencies of acoustic and shell modes contribute to the predominant energy transmission. The coincidence frequency means the frequency corresponding to the coincidence of the wavenumber in both acoustic and shell. In this paper, it is assumed that the internal medium is much lighter than the pipe shell. After the uncoupled acoustic wave in the internal medium and uncoupled shell wave are considered, the coincidence frequencies are found. The analysis is successfully confirmed by the verification of the experiment using the real long steel pipe. This work verifies that the coupled wave characteristic of the shell and the fluid is occurred as predominant energy transmission at the coincidence frequencies.

      • KCI등재

        흡기계 능동소음제어를 위한 적응형 필터 알고리즘의 개발

        김의열(Kim, Eui-Youl),김병현(Kim, Byung-Hyun),김호욱(Kim, Ho-Wuk),이상권(Lee, Sang-Kwon) 한국소음진동공학회 2012 한국소음진동공학회 논문집 Vol.22 No.2

        The filtered-x LMS(FX-LMS) algorithm has been applied to the active noise control(ANC) system in an acoustic duct. This algorithm is designed based on the FIR(finite impulse response) filter, but it has a slow convergence problem because of a large number of zero coefficients. In order to improve the convergence performance, the step size of the LMS algorithm was modified from fixed to variable. However, this algorithm is still not suitable for the ANC system of a short acoustic duct since the reference signal is affected by the backward acoustic wave propagated from a secondary source. Therefore, the recursive filtered-u LMS algorithm(FU-LMS) based on infinite impulse response(IIR) is developed by considering the backward acoustic propagation. This algorithm, unfortunately, generally has a stability problem. The stability problem was improved by using an error smoothing filter. In this paper, the recursive LMS algorithm with variable step size and smoothing error filter is designed. This recursive LMS algorithm, called FU-VSSLMS algorithm, uses an IIR filter. With fast convergence and good stability, this algorithm is suitable for the ANC system in a short acoustic duct such as the intake system of an automotive. This algorithm is applied to the ANC system of a short acoustic duct. The disturbance signals used as primary noise source are a sinusoidal signal embedded in white noise and the chirp signal of which the instantaneous frequency is variable. Test results demonstrate that the FU-VSSLMS algorithm has superior convergence performance to the FX-LMS algorithm and FX-LMS algorithm. It is successfully applied to the ANC system in a short duct.

      • KCI등재

        자동차 임팩트 소음에 대한 음질 요소 개발

        박상원(Park, Sang-Won),김호욱(Kim, Ho-Wuk),나은우(Na, Eun-Woo),이상권(Lee, Sang-Kwon) 한국소음진동공학회 2010 한국소음진동공학회 논문집 Vol.20 No.1

        Vehicles experience the impact due to harsh road conditions. Contact with a barrier on a road induces vehicles to vibrate, which brings about an impact sound. The attenuation of the impact sound is an important issue since passengers may complain about the impact noise. However, the perfect removal of impact noise is not possible as most of impact noise is caused by external conditions. It is thus necessary to make vehicles to possess more desirable sound quality characteristic of impact sound. More research is needed on objective attributes of impact sound; it is not a simple matter since impact noise is transient in nature and has a high level of sound at an instantaneous moment. A new objective attribute of impact noise is designed by using wavelet transform. Wavelet transform is appropriate for the analysis of transient signals such as impact noise. The usefulness of new objective attribute, which is a sound metric, is examined by comparison with the mean subjective rating for real impact noise of passenger cars. The new sound metric has better correlation with the mean subjective rating than already existing sound metrics

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼