RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        2006년 4월 안면도에서 발생한 황사, 안개, 청명, 구름 사례에 대한 에어러솔 특성 분석

        구태영(Tae-Young Goo),홍기만(Gi-Man Hong),김상백(Sang-Beak Kim),공종웅(Jong-Ung Gong),김명수(Myoung-Soo Kim) 한국기상학회 2008 대기 Vol.18 No.2

        The aerosol characteristics in terms of 4 different cases (Asian dust, fog, clear sky and cloud) which had happened at Anmyeon Island in April 2006 were studied using various measurements such as the Micro Pulse Lidar (MPL), sunphotometer, β-ray PM₁? Analyzer, anemoscope and anemometer. In addition, synoptic charts, back trajectory analyses and satellite images were also used to help characterize the aerosol events. The aerosol optical properties were featured by the Aerosol Optical Depth (AOD) and Angstrom exponent which were estimated by the sunphotometer. When Anmyeon Island was dominated by the Asian dust, the AOD was sharply increased as seven times as a yearly average of it (0.35). As compared with a yearly average of the Angstrom exponent of 0.97, the Angstrom exponent of a dust day was significantly low (0.099). In addition, PM₁? mass concentration showed an extremely high record. The maximum concentration reached 1790.5 μg m?³ on 8 April 2006. The maximum mass concentration was shown with delay when the wind speed of 0 m s?¹ was observed. It was also found that a satellite image of the MODIS-RGB had a good agreement with the results of those measurements. It was shown that the MPL was able to describe effectively the vertical distribution of aerosol for all the cases. In particular, the MPL evidently captured the aerosol layer before the cloud observation. The aerosol layer was similarly described by the AOD. On a clear sky day, the AOD had not only a very low value (0.054) but also a feature of homogeneity.

      • KCI등재

        AERI 스펙트럼 분석을 통한 구름에 영향을 받은 스펙트럼 자료 제거 방법 개선

        조준식 ( Joon Sik Cho ),구태영 ( Tae Young Goo ),신진호 ( Jin Ho Shin ) 대한원격탐사학회 2015 大韓遠隔探査學會誌 Vol.31 No.2

        국립기상연구소는 2010년 6월, 하향적외스펙트럼을 관측하는 고분해적외분광간섭계(FT-IR)인 Atmospheric Emitted Radiance Interferometer (AERI)를 안면도 기후변화감시센터에 설치하였다. AERI는 고분해 적외 센서를 탑재하고 있어 위성 기반의 원격탐사 자료를 검증하는데 유효하다. 본 연구에서는 AERI로부터 산출되는 메탄의 품질 향상을 위해 맑을 때의 자료를 분류하는 AERI 스펙트럼 기준의 새로운 방법을 개발하였으며, KLAPS 구름 정보를 이용한 방법과 비교하였다. 맑은 날 관측된 AERI 스펙트럼을 기준 스펙트럼으로 선정하였으며, 구름에 민감한 대기 창 영역을 사용하였다. 임계값 선정을 위해 복사량 임계값 테스트를 실시하였으며, 선정된 임계값을 이용한 AERI 스펙트럼 기준의 방법과 KLAPS 구름 정보를 이용한 방법을 각각 이용하여 최하층 메탄 농도를 산출하였다. 각각 산출된 메탄농도와 지상관측 메탄농도를 비교하였으며, KLAPS 구름 정보를 이용하여 산출된 메탄농도보다 AERI 스펙트럼 기준의 방법으로 산출된 메탄농도의 품질이 더 좋은 것을 확인하였다. 뿐만 아니라 GOSAT 연직 메탄 총량과의 비교에서도 좋은 결과를 보여주었다. The National Institute of Meteorological Research (NIMR) has operated the Fourier Transform InfraRed (FTIR) spectrometer which is the Atmospheric Emitted Radiance Interferometer (AERI) in Anmyeon island, Korea since June 2010. The ground-based AERI with similar hyper-spectral infrared sensor to satellite could be an alternative way to validate satellite-based remote sensing. In this regard, the NIMR has focused on the improvement of retrieval quality from the AERI, particularly clouddata filtering method. The AERI spectrum which is measured on a typical clear day is selected reference spectrum and we used region of atmospheric window. We performed test of threshold in order to select valid threshold. We retrieved methane using new method which is used reference spectrum, and the other method which is used KLAPS cloud cover information, each retrieved methane was compared with that of ground-based in-situ measurements. The quality of AERI methane retrievals of new method was significantly more improved than method of used KLAPS. In addition, the comparison of vertical total column of methane from AERI and GOSAT shows good result.

      • KCI등재

        계절별 AERI 기준 스펙트럼 적용을 통한 구름에 영향을 받은 스펙트럼 자료 제거방법 개선

        조준식 ( Joon Sik Cho ),구태영 ( Tae Young Goo ),신진호 ( Jinho Shin ) 대한원격탐사학회 2015 大韓遠隔探査學會誌 Vol.31 No.5

        국립기상과학원은 2010년 6월부터, 하향적외스펙트럼을 관측하는 고분해적외분광간섭계(FT-IR) 인 Atmospheric Emitted Radiance Interferometer(AERI)를 안면도 기후변화감시센터에 설치하여 운영하고 있다. 고분해 적외 센서를 이용한 AERI는 위성 기반의 원격탐사 자료를 검증하는데 유효하다. 본 연구에서는 계절별 AERI 기준 스펙트럼을 선정 및 적용(Seasonal-Cloud data Filtering Method, S-CFM)하여 구름에 영향을 받은 관측 스펙트럼 자료 제거방법을 개선하였다. S-CFM을 적용하여 산출된 최하층 메탄농도는 한 개의 기준 스펙트럼을 사용(Cloud data Filtering Method, CFM)하여 산출된 최하층 메탄농도및 지상관측 메탄농도와 비교하였으며, AERI 연직 메탄 총량을 산출하여 GOSAT 메탄 연직 총량을 통해 검증 및 분석하였다. S-CFM 방법을 적용하여 산출된 최하층 메탄농도는 CFM의 최하층 메탄농도보다 더 정확도가 높은 것으로 나타났으며, 지상관측 메탄농도의 연간 변화 패턴과 비슷한 결과를 보였다. 또한 GOSAT과 AERI의 연직 메탄 총량 비교에서도 비슷한 농도 분포를 보였으며, 매년 증가하는 패턴을 보였다. 뿐만 아니라 S-CFM을 적용함으로써 비교 가능한 자료의 개수가 증가하였다. 다만 여름철 AERI 스펙트럼을 통해 산출된 최하층 메탄농도 및 연직 총량 농도가 상당히 과대추정 되는 모습을 보이고 있기 때문에 기술적 보완이 필요한 것으로 나타났다. The Atmospheric Emitted Radiance Interferometer (AERI) which is the Fourier Transform InfraRed (FTIR) spectrometer has been operated by the National Institute of Meteorological Research (NIMR) in Anmyeon island, South Korea since June 2010. The ground-based AERI with similar hyperspectral infrared sensor to satellite could be an alternative way to validate satellite-based remote sensing. In this regard, the NIMR has focused on the improvement of Cloud data Filtering Method (CFM) which employed only one reference spectrum of clear sky in winter season. This study suggests Seasonal-Cloud data Filtering Method (S-CFM) which applied seasonal AERI reference spectra. For the comparison of applied S-CFM and CFM, the methane retrievals (surface volume mixing ratio) from AERI spectra are used. The quality of AERI methane retrieval applied S-CFM was significantly more improved than that of CFM. The positive result of S-CFM is similar pattern with the seasonal variation of methane from ground-based in-situ measurement, even if the summer season’s methane is retrieved over-estimation. In addition, the comparison of vertical total column of methane from AERI and GOSAT shows good result except for the summer season.

      • KCI등재

        HadGEM2-AO 기반의 빙상과 빙하에 의한 미래 해수면 변화 전망

        김영미(Youngmi Kim),구태영(Tae-Young Goo),문혜진(Hyejin Moon),최준태(Juntae Choi),변영화(Young-Hwa Byun) 한국기상학회 2019 대기 Vol.29 No.4

        Global warming causes various problems such as the increase of the sea surface temperature, the change of coastlines, ocean acidification and sea level rise. Sea level rise is an especially critical threat to coastal regions where massive population and infrastructure reside. Sea level change is affected by thermal expansion and mass increase. This study projected future sea level changes in the 21st century using the HadGEM2-AO with RCP8.5 scenario. In particular, sea level change due to water mass input from ice-sheets and glaciers melting is studied. Sea level based on surface mass balance of Greenland ice-sheet and Antarctica ice-sheet rose 0.045 m and 0.053 m over the period 1986~2005 to 2081~2100. During the same period, sea level owing to dynamical change on Greenland ice-sheet and Antarctica ice-sheet rose 0.055 m and 0.03 m, respectively. Additionally, glaciers melting results in 0.145 m sea level rise. Although most of the projected sea level changes from HadGEM2-AO are slightly smaller than those from 21 ensemble data of CMIP5, both results are significantly consistent each other within 90% uncertainty range of CMIP5.

      • KCI등재

        항공기를 이용한 온실가스 CO₂와 CH₄의 연속관측: 안면도 겨울철 연직분포사례 분석

        이선란(Shanlan Li),구태영(Tae-Young Goo),문혜진(Hyejin Moon),Lev Labzovskii,Samuel Takele Kenea,오영석(Young-Suk Oh),이해영(Haeyoung Lee),변영화(Young-Hwa Byun) 한국기상학회 2019 대기 Vol.29 No.5

        A new Korean Meteorological Administration (KMA) airborne measurement platform has been established for regular observations for scientific purpose over South Korea since late 2017. CRDS G-2401m analyzer mounted on the King Air 350HW was used to continuous measurement of CO₂, CH₄ and CO mole fraction. The total uncertainty of measurements was estimated to be 0.07 ppm for CO₂, 0.5 ppb for CH₄, and 4.2 ppb for CO by combination of instrument precision, repeatability test simulated in-flight condition and water vapor correction uncertainty. The airborne vertical profile measurements were performed at a regional Global Atmosphere Watch (GAW) Anmyeon-do (AMY) station that belongs to the Total Carbon Column Observing Network (TCCON) and provides concurrent observations to the Greenhouse Gases Observing Satellite (GOSAT) overpasses. The vertical profile of CO₂ shows clear altitude gradient, while the CH₄ shows non-homogenous pattern in the free troposphere over Anmyeon-do. Vertically averaged CO₂ at the altitude between 1.5 and 8.0km are lower than AMY surface background value about 7 ppm but higher than that observed in free troposphere of western pacific region about 4 ppm, respectively. CH₄ shows lower level than those from ground GAW stations, comparable with flask airborne data that was taken in the western pacific region. Furthermore, this study shows that the combination of CH₄ distribution in free troposphere and trajectory analysis, taking account of convective mixing, is a useful tool in investigating CH₄ transport processes from tropical region to Korean region in winter season.

      • KCI등재

        한반도 지역에서의 이산화탄소 변화 경향과 AIRS, GOSAT 위성 자료의 정확도 비교

        이상희 ( Sang Hee Lee ),김준 ( Jhoon Kim ),조희구 ( Hi Ku Cho ),구태영 ( Tae Young Goo ),오미림 ( Mi Lim Ou ),이종호 ( Jong Ho Lee ),( Tatsuya Yokota ) 대한원격탐사학회 2015 大韓遠隔探査學會誌 Vol.31 No.6

        With the global scale impact of atmospheric CO2 in global warming and climate system, it is necessary to monitor the CO2 concentration continuously on a global scale, where satellite remote sensing has played a significant role recently. In this study, global monthly CO2 concentrations obtained by satellite remote sensing were compared with ground-based measurements at Anmyeon-do and Gosan Korean Global Atmosphere Watch Center. Atmospheric CO2 concentration has increased from 371.87 ppm in January 1999 to 405.50 ppm in December 2013 at Anmyeon-do station (KMA, 2013). Comparison of the continuous measurements by flask air sampling at Anmyeon-do shows the same trend and seasonal variations with those of global monthly mean dataset. Nevertheless, the trends of CO2 over Northeast Asia showed the higher than those of global and the trends also changes with different slope. CO2 products derived from Greenhouse Gases Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS) were compared with ground-based measurement at Anmyeon-do. The monthly mean values of GOSAT and AIRS data are systemically lower than those obtained at Anmyeon-do, however, the seasonal cycle of satellite products present the similar trend with values of global and Anmyeon-do. The accuracy of CO2 products from GOSAT and AIRS were evaluated statistically for two years from January 2011 to December 2012. GOSAT showed good correlation with the correlation coefficient, RMSD and bias of 0.947, 5.610 and -5.280 to ground-based measurements respectively, while AIRS showed reasonable comparison with 0.737, 8.574 and -7.316 at Anmyeon-do station, respectively.

      • KCI등재

        Atmospheric River 상륙이 한반도 강수와 기온에 미치는 영향 연구

        문혜진(Hyejin Moon),김진원(Jinwon Kim),Bin Guan,Duane E. Waliser,최준태 (Juntae Choi),구태영(Tae-Young Goo),김영미(Youngmi Kim),변영화(Young-Hwa Byun) 한국기상학회 2019 대기 Vol.29 No.4

        The seasonal climatology of atmospheric rivers (ARs) and their effects on the seasonal precipitation and temperature in Korea are examined using the AR chronology obtained by a methodology based on the vertically integrated water vapor transport (IVT) in conjunction with a fine-scale gridded analysis of station precipitation and temperature. ARs are found to affect Korea most heavily in the warm season with minimal impacts in winter. This contrasts the AR effects in the western North America and the Western Europe that are affected most in winters. Significant portions of precipitation in Korea are associated with AR landfalls for all seasons; over 35% (25%) of the summer (winter) rainfall in the southern part of the Korean peninsula. The percentage of AR precipitation over Korea decreases rapidly towards the north. AR landfalls are also associated with heavier-than-normal precipitation events for all seasons. AR landfalls are associated with above-normal temperatures in Korea; the warm anomalies increase towards the north. The warm anomalies during AR landfalls are primarily related to the reduction in cold episodes as the AR landfalls in Korea are accompanied by anomalous southerlies/southwesterlies.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼