RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fundamental Properties of Composite Board Made with Oriented Strand Board and Three Different Species of Veneer

        ( Hikma Yanti ),( Muh Yusram Massijaya ),( Tekat Dwi Cahyono ),( Eka Novriyanti ),( Apri Heri Iswanto ) 한국목재공학회 2019 목재공학 Vol.47 No.2

        This research presents an improvement of the physical and mechanical properties of composite board (com-ply) made of Oriented Strand Board (OSB) coated with wood veneer of Pine (Pinus merkusii), Avocado (Persea Americana) and Mahogany (Swietenia mahogany). 1.5 mm thick veneers of those three wood types were adhered to the surface of OSB using two adhesive types: epoxy and isocyanate. The adhesive with the glue spread of 250 g m<sup>-2</sup> applied using single glue line was spread and then cold pressed with the pressure of 15 kg cm<sup>-2</sup> for 3 hours. The research result showed an improving dimension stability of com-ply, but not found on all parameters of physical property test. The moisture content seemed to be influenced by the com-ply type, yet not related to its thickness swelling, water absorption and linear expansion. The exception took place in the parallel linear expansion when immersed for 2 hours. The highest to the lowest increases of MOE and MOR were consecutively found on OSB coated with wood veneer of Pine, Mahogany and Avocado. However, the increases were statistically insignificant. The highest increasing screw hold power was found at the com-ply type AE (avocado veneer and epoxy adhesive) that was by 28%.

      • KCI등재

        Resistance of Methyl Methacrylate-Impregnated Wood to Subterranean Termite Attack

        ( Yusuf Sudo Hadi ),( Muh. Yusram Massijaya ),( Lukmanul Hakim Zaini ),( Imam Busyra Abdillah ),( Wa Ode Muliastuty Arsyad ) 한국목재공학회 2018 목재공학 Vol.46 No.6

        Timber from fast-growing tree species is susceptible to by biodeterioration attack, particularly subterranean termites. Impregnation with methyl methacrylate (MMA) potentially increases wood resistance to subterranean termite attack. Four wood species, namely sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), mangium (Acacia mangium), and pine (Pinus merkusii), were impregnated with MMA, and samples of untreated and imidacloprid-preserved wood were prepared for comparison purposes. Small stakes, sized 0.8 cm by 2 cm in cross section by 20 cm in the longitudinal direction, were inserted into the ground for 3 months, and the weight loss of each specimen was determined at the end of the test period. A factorial 4 × 3 completely randomized design was used for data analysis; the first factor was wood species, and the second factor was treatment. The results showed that MMA polymer loadings were 27.88%, 24.91%, 14.14%, and 17.81% for sengon, jabon, mangium, and pine, respectively, and amounts of imidacloprid retention were 7.56 kg/m<sup>3</sup>, 5.98 kg/m<sup>3</sup>, 5.34 kg/m<sup>3</sup>, and 9.53 kg/m<sup>3</sup>, respectively. According to an analysis of variance, wood species, treatment, and interaction of both factors significantly affected the weight loss of wood specimens. Mangium had the smallest weight loss, followed by pine, sengon, and jabon. MMA impregnation into the wood increased the resistance of wood samples to subterranean termite attack during in-ground testing, but the resistance level was lower than that of imidacloprid-preserved wood. Except for mangium wood, the MMA treatment did not significantly affect resistance.

      • KCI등재

        Color Change and Resistance to Subterranean Termite Attack of Mangium (Acacia mangium) and Sengon (Falcataria moluccana) Smoked Wood

        ( Yusuf Sudo Hadi ),( Muh Yusram Massijaya ),( Imam Busyra Abdillah ),( Gustan Pari ),( Wa Ode Muliastuty Arsyad ) 한국목재공학회 2020 목재공학 Vol.48 No.1

        Indonesian log production is dominated by young trees harvested from plantation forests. The timber contains of sapwood and juvenile wood, which are not resistant to termite attack. Smoking treatment can enhance wood resistance to termite attack, but it also changes the color. Specimens of mangium (Acacia mangium) and sengon (Falcataria moluccana) wood were exposed for 1, 2, and 3 weeks to smoke produced from the pyrolysis of salam (Syzygium polyanthum) wood. The color change of the wood was measured using the CIELab method. In addition, wood specimens were exposed to subterranean termites (Coptotermes curvignathus Holmgren) under laboratory conditions. Untreated and imidacloprid-preserved wood samples were also prepared for comparison purposes. The results showed that the color of smoked wood differed from that of untreated wood, and the color change for sengon was greater than for mangium. In addition, the 1-week smoking period changed the wood color less than the 2- and 3-week periods, which did not differ. Imidacloprid-preserved wood had distinctive color changes compared to untreated wood. Untreated mangium wood had moderate resistance to subterranean termite attack (resistance class III), while sengon had very poor resistance (resistance class V). Salam wood smoke enhanced wood resistance to termite attack, and smoke treatment of 1 week for mangium and 2 weeks for sengon resulted in the wood becoming very resistant (resistance class I). Both types of smoked wood were more resistant to subterranean termite attack than imidacloprid-preserved wood (average class II resistance).

      • KCI등재

        Physical and Mechanical Properties of Methyl Methacrylate-Impregnated Wood from Three Fast-Growing Tropical Tree Species

        ( Yusuf Sudo Hadi ),( Muh Yusram Massijaya ),( Lukmanul Hakim Zaini ),( Rohmah Pari ) 한국목재공학회 2019 목재공학 Vol.47 No.3

        Timber from plantation forests has inferior physical and mechanical properties compared to timber from natural forest because it is mostly from fast-growing tree species that are cut at a young age. Filling cell voids with methyl methacrylate (MMA) can improve the wood properties. The purpose of this study was to determine the physical and mechanical properties of MMA-impregnated wood from three fast-growing wood species, namely jabon (Anthocephalus cadamba (Roxb.) Miq.), mangium (Acacia mangium Willd) and pine (Pinus merkusii Jungh. & de Vriese). Wood samples were either immersed in MMA monomer or impregnated with it and then heated to induce the polymerization process. Jabon, which was the lowest density wood, had the highest polymer loading, followed by pine and mangium. The physical and mechanical properties of samples were affected by wood species and the presence of MMA, with higher-density wood having better properties than wood with a lower density. Physical and mechanical properties of MMA wood were enhanced compared to untreated wood. Furthermore, the impregnation process was better than immersion process resulting the physical and mechanical properties. Based on MOR values, the MMA woods were one strength class higher compared to untreated wood with regard to Strength Classification of Indonesian Wood.

      • KCI등재

        Properties of Glued Laminated Timber Made from Fast-growing Species with Mangium Tannin and Phenol Resorcinol Formaldehyde Adhesives

        ( Jessica Hendrik ),( Yusuf Sudo Hadi ),( Muh Yusram Massijaya ),( Adi Santoso ),( Antonio Pizzi ) 한국목재공학회 2019 목재공학 Vol.47 No.3

        This study characterized the chemical compounds in tannin from mangium (Acacia mangium) bark extract and determined the physical-mechanical properties of glued laminated timber (glulam) made from sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), and mangium wood. The adhesives used to prepare the glulam were based on mangium tannin and phenol resorcinol formaldehyde resin. Five-layer glulam beams measuring 5 cm × 6 cm × 120 cm in thickness, width, and length, respectively, were made with a glue spread of 280 g/m<sup>2</sup> for each glue line, cold pressing at 10.5 kgf/cm<sup>2</sup> for 4 h and clamping for 20 h. Condensed mangium tannin consisted of 49.08% phenolic compounds with an average molecular weight of 4745. The degree of crystallinity was 14.8%. The Stiasny number was 47.22%. The density and the moisture content of the glulams differed from those of the corresponding solid woods with mangium having the lowest moisture content (9.58%) and the highest density (0.66 g/cm<sup>3</sup>). The modulus of rupture for all glulam beams met the JAS 234-2003 standard but the modulus of elasticity and the shear strength values did not. Glulam beams made with tannin had high delamination under dry and wet conditions, but glulam made from sengon and jabon wood met the standard’s requirements. All glulam beams had low formaldehyde emissions and were classified as F**** for formaldehyde emissions according to the JAS 234 (2003) standard.

      • SCOPUSKCI등재

        Physical-Mechanical Properties of Glued Laminated Timber Made from Tropical Small-Diameter Logs Grown in Indonesia1

        Rahma Nur Komariah,Yusuf Sudo Hadi,Muh Yusram Massijaya,Jajang Suryana 한국목재공학회 2015 목재공학 Vol.43 No.2

        The aim of this study was to determine the physical and mechanical properties of glued laminated timber (glulam) manufactured from small-diameter logs of three wood species, Acacia mangium (mangium), Maesopsis eminii (manii), and Falcataria moluccana (sengon), with densities of 533, 392, and 271 kg/m 3 , respectively. Glulam measuring 5 cm by 7 cm by 160 cm in thickness, width, and length, respectively, was made with three to five lamina, or layers, and isocyanate adhesive. The glulams contained either the same wood species for all layers or a combination of mangium face and back layers with a core layer of manii or sengon. Solid wood samples of the same size for all three species were included as a basis for comparison. Physical-mechanical properties and delamination tests of glulam referred to JAS 234:2003. The results showed that the properties of same species glulam did not differ from those of solid wood, with the exception of the shear strength of glulam being lower than that of solid wood. Wood species affected glulam properties, but three- and five-layer glulams were not different except for the modulus of elasticity. All glulams were resistant to delamination by immersion in both cold and boiling water. The glulams that successfully met the JAS standard were three- and five-layer mangium, five-layer manii, and five-layer mangium-manii glulams.

      • KCI등재

        Linear Expansion and Durability of a Composite Boards (MDF Laminated Using Three Selected Wood Veneers) against Drywood Termites

        ( Tekat Dwi Cahyono ),( Hikma Yanti ),( Laela Nur Anisah ),( Muh Yusram Massijaya ),( Apri Heri Iswanto ) 한국목재공학회 2020 목재공학 Vol.48 No.6

        This research was conducted to investigate the linear expansion and resistance properties of a composite board (com-ply). This board was made of medium-density fiberboard (MDF) laminated using avocado (Persea americana), mahogany (Swietenia mahogani), and pine (Pinus merkusii) veneers. These three types of veneers were laminated on both surfaces of the MDF using adhesives, namely, epoxy and isocyanate. Glue (250 g・m<sup>-2</sup>) was spread on the surface, followed by cold press for 3 h with an applied pressure of 15 kg・cm<sup>-2</sup>. The research result revealed that com-ply exhibited an increased dimensional stability compared with MDF, indicated by reduction in water absorption, thickness swelling, and linear expansion. The com-ply made of the pine veneer and isocyanate adhesive exhibited high density, water absorption, thickness swelling, and screw withdrawal load. The com-ply that exhibited the strongest resistance to drywood termite attacks was the one made of the mahogany veneer and isocyanate adhesive. Moreover, the com-ply that exhibited the biggest weight loss (3.6 %) was made of the pine veneer and epoxy adhesive. The results of this research may facilitate in manufacturing com-ply using the selected veneer and adhesive without the application of hot press.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼