http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
North, Colin M,Kim, Byung-Sam,Snyder, Neil,Crawford, Robert B,Holsapple, Michael P,Kaminski, Norbert E Academic Press 2009 TOXICOLOGICAL SCIENCES Vol.107 No.1
<P>Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been well established to require the aryl hydrocarbon receptor; however, the downstream mechanisms for this immunotoxic response remain poorly understood. Based on evidence demonstrating that primary hepatocytes pretreated with interferon-gamma (IFN-gamma) exhibited decreased induction of cytochrome P450 1A1 (CYP1A1) by TCDD, and that serum factors alter the sensitivity of the in vitro T-cell-dependent IgM antibody forming cell (AFC) response, it was hypothesized that IFN-gamma attenuates suppression of humoral immune responses by TCDD. In fact, concomitant addition of IFN-gamma (100 U/ml) produced a concentration-related attenuation of TCDD-mediated suppression of the anti-sheep erythrocyte (anti-sRBC) IgM AFC response. Time-of-addition studies performed by adding 100 U/ml IFN-gamma at 0, 1, 2, 4, 12, 24, 48, and 72 h post-TCDD showed that suppression of the AFC response was prevented only when IFN-gamma was added within 2 h of TCDD treatment. mRNA levels of the IgM components, immunoglobulin kappa light chain, immunoglobulin mu heavy chain, and immunoglobulin J-chain were significantly decreased by TCDD treatment, an effect that was completely reversed by IFN-gamma (100 U/ml) cotreatment. Further studies showed that IFN-alpha, IFN-beta, and IFN-gamma significantly attenuate TCDD-induced increases in CYP1A1 mRNA levels to varying degrees, but concentrations as high as 1000 U/ml of type I IFNs did not reverse the effect of TCDD on the anti-sRBC IgM AFC response. In summary, IFN-gamma prevents TCDD-mediated suppression of the IgM AFC response in a concentration- and time-related manner by altering transcriptional effects associated with TCDD treatment.</P>
Cyclophosphamide 의 면역독성 검출을 위한 in vitro 시험법의 개발
정태천(Tae Cheon Jeong),(Michael P . Holsapple),차신우(Shin Woo Cha),하창수(Chang Su Ha),한상섭(Sang Seop Han),노정구(Jung Koo Rho) 한국응용약물학회 1994 Biomolecules & Therapeutics(구 응용약물학회지) Vol.2 No.3
A splenocyte culture system supplemented with liver microsomes was developed to detect immunotoxic chemicals which require metabolic activation using cyclophosphamide as a positive standard. When liver microsomes were added to splenocyte cultures isolated from female B6C3F1 mice, the proliferation of splenocytes by lipopolysaccharide (LPS) was increased and the proliferation by concanavalin A (Con A) was decreased. However, when compared with each corresponding control, cyclophophamide was successfully activated to metabolites capable of suppressing lymphoproliferative responses. This suppression was clearly dependent upon the amounts of microsomes added and/or the concentration of cyclophosphamide exposed. In these cultures, the proliferation of splenocytes was suppressed when the cells were exposed to cyclophosphamide on the day of culture initiation. On the other hand, microsome was responsible for the increase in LPS mitogenicity and NADPH was responsible for the decrease in Con A mitogenicity. Finally, our present culture system was compared with the hepatocyte-splenocyte coculture system which we had developed earlier. We found that the hepatocyte-splenocyte coculture was better able to activate cyclophosphamide to metabolites capable of suppressing the antibody response to sheep erythrocytes. Although our present culture system was relatively poor to activate cyclophosphamide in cultures for antibody response, it will be useful as a simple screening method to detect suppression of certain in vitro immunotoxic parameters like LPS mitogenicity by chemicals which require metabolism.